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Optimization
in

Medicine

Introduction by the Editors

Optimization is increasingly becoming a vital
component in medical and biological advances. In
this issue, we present summaries of three areas
(imaging, medical diagnosis, and treatment design)
for which optimization has played a key role in
advancing the state-of-the-art. First, Herman and
Kuba describe discrete tomography and provide
an overview of the most frequently used optimiza-
tion methods in this imaging application. Next,
Chaovalitwongse and Pardalos present optimization
approaches in medical diagnosis. In particular, they
report on their research, using statistical analysis
and quadratic programming, involving the predic-
tion of seizures and localization in brain epilepsy.
This is followed by the article by Lee and Deasy,
who describe treatment planning optimization in
intensity-modulated radiation therapy, and present
their experience using mixed integer programming
approaches. Their article also briefly summarizes
other optimization techniques applied to this area.

Eva. K. Lee and Ariela Sofer, September 2006.
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1. Introduction

Discrete Tomography (DT), as we perceive the field,
has to do with determining a function (perhaps only
partially, perhaps only approximately) from its pro-
jections, when the function has a known discrete
range. The knowledge of the discrete range, pos-
sibly together with some prior information, can sig-
nificantly reduce the number of projections required
for a high-quality reconstruction. The reconstruc-
tion methods used in DT applications are usually
based on some optimization problem. In this sur-
vey paper we are going to give an overview of the
most frequently used optimization methods used in
DT, also mentioning a few examples of its possible
applications. Further survey papers [15, 16] about
the medical applications of DT have been published
discussing its general, not only its optimization, as-
pects.

Why is optimization so generally used in the appli-
cations of DT? The answer comes from the fact that,
in most applications, the limited number of projec-
tions determines not only one but many solutions.
This is usually the case even when some prior in-
formation about the function f to be reconstructed
is available (prior information can be, for example,
that f is the characteristic function of a 3D convex
body) and included into the reconstruction process.
Using optimization terminology, we can say that the
projection data and the prior information together
determine the set of feasible solutions and in order
to single out one of them we have to select an objec-
tive function to be minimized over the set of feasible
solutions. Then the function f optimal in this sense
is to be considered as the solution of the DT recon-

struction problem.
Since the different imaging techniques of tomog-

raphy (e.g., CT, SPECT, PET, MR, and US) have
been so successfully applied in medicine, it is nat-
ural that the early versions of DT have been tried
in human diagnostics (e.g., angiography) as early as
in the 1970s. However, there is a very clear limi-
tation of DT in medicine: the human body cannot
be (or can be only roughly) represented by a func-
tion with a discrete range. Such rough representa-
tion is possible, for example, when the absorption of
the different tissues can be approximated by a func-
tion having only three possible values correspond-
ing to the absorption coefficients of bone, lung, and
the so-called soft tissues. Even such an approximate
function is useful for absorption correction in Single-
Photon Emission Computed Tomography (SPECT)
in order to improve the quality of imaging. Another
example for DT application in medicine is angiogra-
phy, in which contrast material with high absorption
value is injected into the blood vessel to be imaged
and in this way a two-valued function (absorption
coefficients of the contrast material and the back-
ground) can be used for representation.

The structure of the paper is the following. The
reconstruction problem of DT with the necessary
definitions and notation is described in Section 2.
The next section presents the ways the DT recon-
struction problem can be reformulated as some op-
timization problem. This section contains also the
different optimization methods applied for image re-
construction in medicine. Section 4 discusses DT
results in different medical imaging techniques. A
brief discussion section concludes the paper.

2. Definitions and notation

Let f : X → D be the function to be reconstructed.
The domain of f , X can be continuous or discrete,
however the range of f is a set of known real numbers
D = {d1, d2, . . . , dc} (c > 1).

In the applications we can usually give some prior
information about the function to be reconstructed.
For example, we may assume a class of functions
having constant values on closed 3D regions with
triangulated boundary surfaces. The set of functions
satisfying the given prior property is denoted by F .

The projections of the functions f are defined as
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integrals on certain subsets S of X. (These subsets
typically consist of straight lines, strips, or tubes.)
Let us suppose that all elements f of F are integrable
on each element of S. Then the projection of f ∈ F
for an S ∈ S is defined with the help of the projection
transformation P as

[Pf ](S) =
∫
S

f(x) dx. (1)

In most applications the projections can be classified
as parallel or fan-beam. In the case of parallel pro-
jections, the elements of S can be partitioned such
that each partition class contains all the lines which
are parallel to one direction in X. Fan-beam pro-
jections mean that the partition classes contain all
the lines that diverge from a single point of X (in
3D and in higher dimensions, this is also called cone
beam projections).

In the following we need to keep a clear distinction
between the projection of the function f , denoted by
g = Pf , and the projection data, y, available from
the measurements. The projection data y has the
same domain and range as g, but in practice it is
only an approximation to g.

The reconstruction problem in DT can be ex-
pressed as follows. Let F be a class of functions
f : X → D and let S be a finite set of subsets of X
over each all elements of F are integrable.

Reconstruction(F ,S).
Given: The projection data y(S) ∈ R, for all

S ∈ S.

Task: Find a function f ∈ F such that

[Pf ](S) ≈ y(S), (2)

for all S ∈ S.

(The symbol ≈ denotes approximate equality.)
It is clear that posing the reconstruction problem

in this way is more realistic than demanding exact
equations instead of (2). Due to noisy projections or
modeling errors it is quite probable that there is no
solution if we replace ≈ with = in (2).

There are several approaches different from the
optimization one to solve the reconstruction problem
for special sets F and S [14]. In the rest of this

paper we consider only reconstruction methods that
use optimization.

3. Reconstruction as an optimiza-
tion problem

The general formulation of the reconstruction prob-
lem in the medical application of DT in the form of
an optimization problem is:

Minimization of a cost function(F ,S).
Constraint: f ∈ F .

Task: Find the minimum of a given real val-
ued cost function C(f).

For example, a popular form in the literature for
the cost function is

C(f) = ‖Pf − y‖2 + Φ(f), (3)

where ‖·‖ denotes a two-norm and Φ is a real valued
function. In the cost function (3), Φ(f) indicates
how undesirable a solution f is from the viewpoint
of our application. More generally, variants of (3)
may be applied; the specific form of the resulting
C(f) depends on the representation of f , the selected
norm ‖ · ‖, and the function Φ.

A most frequently used representation of f is when
the domain X is a finite set of I elements (called
points, pixels, or voxels). In this case the projec-
tion transformation P is usually replaced by a linear
equation system Af = g,∑

i

aijfi = gj , j = 1, . . . , J, (4)

where fi denotes the ith pixel value (i = 1, 2, . . . , I),
A = (aij)I×J , and aij describes the contribution of
the ith pixel to the jth element of S.

Another way of representing the function to be
reconstructed in DT is to consider f as the charac-
teristic function of some 3D set F . One possibility
is to suppose that F is a finite polyhedron having a
surface of triangles [4].

Another class of cost functions is based on some
probabilistic model. For example, let us suppose that
the function f to be reconstructed is a typical mem-
ber of a class of images having a known probabilis-
tic distribution Π(f) (e.g., a Gibbs distribution with
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given parameters). Furthermore, suppose that we
know the conditional probability L(y|f) of measur-
ing projection data y if the function is f .

Optimization of probabilistic models
(F ,Π, L,S).

Constraint: f ∈ F .

Given: The probabilistic distributions Π(f)
and L(y|f).

Task: Find the optimum of a given real val-
ued cost function C(f) depending on
Π(f) and L(y|f).

As examples, we can take the maximum likeli-
hood, the maximum a posteriori, or the minimum
mean square error solution (see, e.g., [8, 9, 10]).

Another way to reformulate the DT reconstruc-
tion problem is to consider it as a linear integer pro-
gramming problem [1, 11, 13]. Take again the repre-
sentation and problem given by the linear equation
system (4). Instead of looking for the binary solu-
tion directly, first let us solve the problem with the
constraint 0 ≤ fi ≤ 1, i = 1, 2, . . . , I. Accordingly
we have

Linear programming (A).

Constraints: 0 ≤ fi ≤ 1, i = 1, 2, . . . , I,
Af ≤ y.

Task: Find the minimum of a given linear
cost function C(f).

In most cases we are interested in a binary solu-
tion. The usual optimization method is to apply LP-
relaxation to the range [0, 1] and round the fractional
solution. Further specialization of this approach is:

Smoothness (A,B).

Constraint: 0 ≤ fi ≤ 1, i = 1, 2, . . . , I,
Af ≤ y, z ≥ Bf , z ≥ −Bf .

Task: Find the minimum of
C(f) = −

∑
i fi + γ ·

∑
i zi.

Here B is an I×I real matrix describing some prop-
erty of the solution to be found. For example,

B =



−1 1 0 0 . . . . . . . . . 0
0 −1 1 0 . . . . . . . . . 0
... . . . . . . . . . . . . . . . . . .

...
... . . . . . . . . . 0 −1 1 0
... . . . . . . . . . 0 0 −1 1


means that the first order differences of f are taken
into account in the constraints and we are looking
for an f that is smooth in this sense. Similar idea
can be applied for higher order differences and even
more complex properties (see, e.g., [23]).

4. Medical applications

One of the first medical applications of optimization
in discrete tomography was published by Slump and
Gerbrands [22]. They reconstructed the left ventricle
of a dog from two projections. Because of the noise
in the projection data they selected the constraints
as

max{0, yj −
√

yj} ≤
I∑

i=1

aijfi ≤

min{yj +
√

yj , n},

where n denotes the number of columns and rows in
the n × n binary matrix representing f . The cost
function is defined as

C(f) =
I∑

i=1

cifi,

where the values of ci, i = 1, 2, . . . , I, are determined
on the base of a binary model (i.e., a binary matrix)
as follows. The element ci = 0 if the ith pixel in the
model is 1, otherwise ci is a positive integer reflecting
the distance of the pixel from the nearest 1-pixel of
the model. That is, the a priori knowledge about f is
that the positions of the 1s in the model constitute a
subset of the positions of 1s in the cross-section to be
determined. The size of the reconstructed sections
was small, 46× 46.

This method was modified by Reiber and co-
workers [19] in order to be applicable to coronary
artery reconstruction from two X-ray projections.
The constraints were changed to

yj − γ ·
√

yj − b ≤
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≤
∑

i

aijfi ≤ yj + γ ·
√

yj + b

j = 1, 2, . . . , J,∑
i

fi = 1/2 · (
∑

j

yj), (5)

where the constants b and γ are related to the back-
ground thickness (i.e., the thickness of the tissues
different from the artery) and the X-ray source cur-
rent, respectively. Equation (5) expresses that we
look for a solution whose total sum is the average
of the total sums of the two projections (which can
differ because of the noise). Reiber and co-workers
performed tests using perspex phantoms with cir-
cular cross-sections. The method reconstructed the
cross-sections with 18% relative mean error [19].

In 1985 Gerbrands and Slump published another
reconstruction method [12], which is an extension of
[22], that takes into account the stochastic nature
of the X-ray imaging process. The reconstruction
problem is formulated as the minimization of

C(f) = ω ·
∑

j

(
∑

i aijfi − yj)
2

σ2
j

+
∑

i

cifi

under the constraint (5). When the coefficient ω
has a higher value, then the solution is more con-
sistent with the projection data and is further from
the model forced by the coefficients ci. This method
was applied to reconstruct a segment of a coronary
artery from the same data as in [19].

Pellot and co-workers reconstructed vascular
structures from two X-ray projections [17]. Let us
suppose that the previously reconstructed adjacent
cross-section is f (p). The cost function was defined
by (3) with

Φ(f) = λ1 ·
∑

i

Φi(f) + λ2 ·
∑

i

|fi − f
(p)
i |,

where λ1 and λ2 are coefficients (which are reduced
during the iterative process of optimization) and
Φi(f) is the number of pixels in the 8-neighborhood
of pixel i whose value is different from fi. The first
term forces the reconstructed vessel cross-sections to
be as compact as possible, while the second term
encourages solutions which have similar neighboring
cross-sections. For each cross-section, the optimiza-
tion procedure starts with an initial f , which is the

characteristic function of the ellipse that best fits
the projection data in the least squares sense. Then
simulated annealing (SA) is applied to find the op-
timal 3D shape, but in such a way that only periph-
eral pixels are changed in the iterative steps. Re-
constructions from simulated projections of known
shapes were used to set the coefficients λ1 and λ2

and the parameters of the SA procedure. Experi-
ments were also performed on real angiograms. The
iliac bifurcation of a patient was reconstructed from
two projections and, according to a subjective com-
parison of the projections of the reconstructed shape
with the real radiological projections, the conformity
was judged to be correct.

Robert, Peyrin, and Yaffe reconstructed simulated
vascular cross-sections from a few (2 to 9) cone-beam
projections [20]. The cost function to be minimized
was (3) with Φ(f) defined as a continuity term that
encourages a voxel to have the same value as the ma-
jority of its 3D neighbors. To find the optimum, an
iterative procedure based on SA was applied. Exper-
iments showed that the value of MV error, defined
as

MV =
∑

i |fi − f
(0)
i |

2
∑

i f
(0)
i

· 100%,

is reduced from 9% without the continuity term in
the cost function to 4% with the continuity term
when reconstructing from three cone-beam projec-
tions a simulated branched vessel exhibiting a steno-
sis.

Chan and co-workers tested discrete tomography
methods for phantom studies in Positron Emission
Tomography (PET) [8, 9]. They applied the follow-
ing two-stage reconstruction procedure:

1. Perform a reconstruction using some classi-
cal (nondiscrete) algorithm, e.g., filtered back-
projection [18], to produce an initial estimate
image f ′.

2. Perform a Bayesian restoration of f ′ to pro-
duce f .

The restoration is done by minimization of the func-
tion

C = Π(f) · L′(f ′ | f).

Simulated annealing was applied for minimizing this
function C.
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Cunningham, Hanson, and Battle studied the re-
construction of a physical emission heart phantom
from Single-Photon Emission Computed Tomogra-
phy (SPECT) data [4, 10]. Altogether 24 cone-
beam projections were available for the reconstruc-
tion. Assuming that the emitting radio-tracer is
homogeneously distributed throughout the volume,
we have again a discrete tomography reconstruction
problem: the volume to be reconstructed contains
two values, the absorption coefficients of the heart
phantom and the background. The authors used the
maximum a posteriori (MAP) estimate, i.e., the f
that maximizes

Π(f) · L(y | f),

where Π(f) and L(y | f) denote the known distribu-
tion of the possible objects f ∈ F and the known
probability of the measured projection y given that
the image is f , respectively. The heart phantom
was represented by a function having constant value
within the 3D region of the heart with a triangulated
boundary surface. The cost function was

C =
∑

j

(gj − yj · log gj) + Φ(f),

where the function Φ enforces smoothness on the sur-
face of the reconstructed object. A gradient-based
method was proposed. The results showed the ex-
pected forms in most regions of the phantom.

Battle and co-workers reconstructed also free-form
deformation (FFD) models to create 3D attenua-
tion maps of the torso for attenuation correction
of SPECT studies [2, 5, 6]. They considered the
object to be reconstructed to be a set of closed re-
gions: soft tissues, lungs and the spine. The regions
were embedded one into another and each region
was assumed to have a uniform attenuation coeffi-
cient. Altogether 37 parallel projections were col-
lected. FFDs were used to describe continuous de-
formations of the space embedding the surfaces of
the regions. The FFDs were given by the displace-
ments of control points. Thus reconstruction con-
sisted of estimation of the deformation of the initial
set of control points and of estimation of the atten-
uation coefficient of each region. The cost function
was a log likelihood function:

C = log
∑

j

(gj − yj)2

gj
.

The optimization method to minimize the cost func-
tion was a quasi-Newton algorithm. Simulation
studies were performed.

Battle and co-workers showed [3] that a similar
FFD technique can be used for the lung by SPECT.
In that case the distribution of the radioactive gas,
and so the radioactivity, can be considered to be uni-
form in the regions of the lungs. The closed surfaces
of the regions are represented by sets of triangles.
The reconstruction starts with an initial 3D object
consisting of two distinct regions of the lungs, and
then goes on finding the displacements of the control
points, and so the corresponding deformed object,
that best match the given projection data. They
reported on using ML and MAP solutions. Exper-
iments were performed on simulated data sets us-
ing 36 parallel projections. The FFD was quicker
and gave superior results than a direct deformation
method.

Another optimization method was tested by Car-
valho and co-workers [7]. They supposed that the
image f is a random sample from a known Gibbs
distribution. The cost function to be minimized was
defined as

C(f) = −
∑

i

Ii(f) + γ ·
∑

j

|yj − gj |,

where Ii(f) is the so-called local energy function for
the pixel i depending on the binary value of fi and
those of its eight neighbors, i.e., configuration in
the 8-neighborhood of the pixel i. The local energy
function determines which are the preferred and less-
preferred configurations in the reconstructed image.
The software phantoms used for testing consisted of
mathematically-described approximations of the left
and right ventricles of the heart and the left atrium,
the image sizes were 63× 63. Three views were gen-
erated (from the horizontal, the vertical, and a di-
agonal direction). The average MV error where f (0)

denotes the phantom, was between 1.3% and 3.1%
depending on the simulated noise level.

Senasli et al. [21] published a reconstruction
method using (cubic) B-spline functions to describe
the vessel contours in each cross-section. In this case,
reconstruction consisted of finding the optimal con-
trol points of B-splines. The cost function was writ-
ten as (3) with

Φ(f) = λ1 · Ureg + λ2 · Ucont,
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where the contour regularity term Ureg and Ucont

measure the irregularity of the actual contour and
the continuity between the previous and the cur-
rent cross-sections, respectively. Simulated anneal-
ing was used for positioning the control points. In
one iterative step a randomly selected control point
could move to one of its 8-neighbors. The initial
contour was an ellipse and the initial contour points
were uniformly distributed over it. Experiments
were performed on software and physical phantoms
simulating both concentric and eccentric stenoses,
and the error of reconstruction was measured as the
relative mean error R between f and the real object
f (0), defined by

R =
∑

i |fi − f
(0)
i |∑

i f
(0)
i

· 100%.

5. Conclusion

Optimization is an appropriate tool in DT because
it selects a particular solution among the many
that would be available if only constraint satisfac-
tion were required. In this paper we have given an
overview of the specific choices for constraints and
optimizing functionals that were suggested in litera-
ture and their reported performance in medical ap-
plications.
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Tomographic reconstruction using free-form
deformation models, in Medical Imaging: Im-
age Processing, K. M. Hanson et al., editors,
Proc. SPIE. 3661 (1999), pp. 356–367.

[4] X. L. Battle, K. M. Hanson, and G. S. Cun-
ningham, Tomographic reconstruction using
3D deformable models, Phys. Med. Biol., 43
(1998), pp. 983–990.

[5] X. L. Battle, C. Le Rest, A. Turzó, and Y. Bizais,
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1. Introduction

At least 40 million people worldwide (or 1% of the
population) currently suffer from epilepsy, which is
the second most common serious brain disorder after
stroke. Epilepsy is a chronic condition of diverse eti-
ologies with the common symptom of spontaneous
recurrent seizures, which is characterized by inter-
mittent paroxysmal and highly organized rhythmic
neuronal discharges in the cerebral cortex. In some
types of epilepsy (e.g., focal or partial epilepsy),
there is a localized structural change in neuronal
circuitry within the cerebrum which produces orga-
nized quasi-rhythmic discharges, which spread from
the region of origin (epileptogenic zone) to activate
other areas of the cerebral hemisphere [29]. The
transitional development of the epileptic state can be
considered as changes in network circuitry of neurons
in the brain that produce changes in voltage poten-
tial, which can be captured by an electroencephalo-
gram (EEG), the most common tool for evaluating
the physiological state of the brain. These changes
are reflected by wriggling lines along the time axis
in a typical EEG recording.

Approximately 25 to 30% of epileptic patients re-
main unresponsive to the treatment with antiepilep-
tic drugs (AEDs), which is the mainstay of epilepsy
treatment, and continue to have seizures and still

have inadequate seizure control. Epilepsy surgery is
another alternative treatment for medically refrac-
tory patients with the aim of excising the portion of
brain tissue supposed to be responsible for seizure
initiation. However, at least 50% of pre-surgical
candidates eventually will not undergo respective
surgery because a single epileptogenic zone could not
be identified or was located in functional brain tis-
sue. Besides, only 60 to 85% of epilepsy surgery
cases result in seizure free. In the recent years, the
vagus nerve stimulator Neurocybernetic Prosthesis
has been available as an alternative epilepsy treat-
ment that reduces seizure frequency; however, the
parameters of this device (amplitude and duration
of stimulation) continue to be arbitrarily adjusted by
physicians. Moreover, more than a minority of pa-
tients have minor side effects and can benefit from
this treatment. Due to the shortcomings and side
effects of current epilepsy treatment, there has been
an urgency for new development of novel therapeutic
treatments for epilepsy. During the last few years,
there has been a great deal of research interest in
epilepsy research shifted from the research in curing
epilepsy to the ability to anticipate/predict the onset
of seizures. Although spontaneous epileptic seizures
seem to occur randomly and unpredictably and be-
gin intermittently as a result of complex dynami-
cal interactions among many regions of the brain,
neurologists still believe that seizures occur in a pre-
dictable fashion. Seizure prediction is a very promis-
ing option for the effective and safe treatment of peo-
ple with epilepsy by avoiding both the side effects of
drugs and cutting out pieces of brain. The most real-
izable application of seizure prediction development
is its potential for use in therapeutic epilepsy devices
to either warn about an impending seizure or trigger
intervention to prevent seizures before they begin.

Work on seizure prediction started in the
1970s [37] and early 1980s [30] to show the seizure’s
predictability. Most of the work was focused on
visible features in the EEG (e.g., epileptic spik-
ing) to extract seizure precursors. More advanced
quantitative analyses (e.g., spectral analysis) in the
EEG are applied to discover the abnormal activity
and demonstrate the predictability in seizure pat-
terns. Since the complexity and variability of the
seizure development cannot be captured by tradi-
tional methods used to process physiological signals,
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Iasemidis and co-workers were the first group to at-
tempt to apply the theory of nonlinear dynamics
to the EEG for predicting seizures [17]. The re-
sults of this work indicates that the EEG becomes
progressively less chaotic as seizures advance, with
respect to the estimation of short-term maximum
Lyapunov exponents (STLmax), which is a measure
of the order or disorder (chaos) of signals. Dur-
ing the past decade, Iasemidis and his group have
demonstrated dynamical properties and the large-
scale patterns of EEG that emerge when neurons in-
teract all together, which demonstrate that the con-
vulsive firing of neurons in epileptic seizures offers
such a clear case of collective dynamics. For exam-
ple, evidence for nonlinear time dependencies in the
inter-seizure intervals observed from patients with
frequent partial seizures is reported in [11]. This ob-
servation suggests that the occurrence of seizures,
though displaying a complex time structure, is not
a random process and may be driven by determinis-
tic mechanisms. Later attempts to apply measures
in nonlinear dynamics were followed by other in-
vestigations [20, 21, 24, 31, 26, 19]. The applica-
tion of the correlation dimension, another nonlin-
ear dynamics approach, is employed to measure the
neuron complexity of the EEG and correlation den-
sity and dynamical similarity were employed to show
evidence of seizure anticipation in pre-seizure seg-
ments [8, 20, 21]. In these studies, reductions in
the effective correlation dimension (Deff

2 , a measure
of the complexity of the EEG signals) are shown to
be more prominent in pre-ictal EEG samples than
at times more distant from a seizure. Elger and
co-workers estimate that a detectable change in dy-
namics can be observed at least 2 minutes before
a seizure in most cases [8]. Because their datasets
were only of 10 to 30 minutes in duration, the ex-
act duration of the pre-ictal state cannot be deter-
mined. These studies were followed by the mea-
sure of phase synchronization in the pre-seizure EEG
signals [24, 31]. Martinerie and co-workers also re-
port significant differences between dimension mea-
sures obtained in pre-ictal versus inter-ictal EEG
samples [24]. They find an abrupt decrease in di-
mension during the pre-ictal transition. This study
also employs relatively brief (40 minutes) samples
of pre-ictal and inter-ictal data. More recently, this
group has reported changes in brain dynamics ob-

tained from scalp electrode recordings of the EEG.
By comparing pre-ictal EEG samples to a reference
sample selected from inter-ictal data, they find evi-
dence of dynamical changes that anticipate tempo-
ral lobe seizures by periods of up to 15 minutes [31].
In that study, they employ a method, inspired by
Manuca and Savit [23], which measures the degree
of stationarity of EEG signals. The changes or sus-
tained bursts in long-term energy profiles of the EEG
are reported to be increasing in volume that leads
to seizure onset [22]. In the most recent study, the
application of the correlation dimension, correlation
integral, and autocorrelation is studied to demon-
strate the fluctuations of seizure dynamics [26, 19].

Although the aforementioned studies have success-
fully demonstrated that there exist temporal changes
in the brain dynamics reflected from seizure de-
velopment, the collective physiological dynamics of
billions of interconnected neurons in brain are not
well studied or understood. Since temporal prop-
erties of the brain dynamics can only capture the
interaction of some groups of locally-connected neu-
rons, they are not sufficient to demonstrate either
the mechanism or the propagation of seizure de-
velopment, which involves billions of interconnected
neurons throughout the brain. For example, exten-
sive investigations indicate that the quantification of
only temporal properties of the brain dynamics (e.g.,
STLmax) fail to demonstrate the capability and suf-
ficiency to predict seizures [6].

For this reason, a study that considers both tem-
poral and spatial properties of the brain dynamics
is proposed to demonstrate that the spatiotemporal
dynamical properties of EEG’s can reveal patterns
that correspond to specific clinical states [28, 14, 27].
These studies lead to the development of an Auto-
mated Seizure Warning System (ASWS) [33, 35, 5],
which not surprisingly demonstrates that the inter-
ictal, ictal, and immediate post-ictal states are
distinguishable with respect to the spatiotemporal
dynamical patterns/properties of intracranial EEG
recordings. These patterns are considered to be
seizure precursors reflected from the convergence
of STLmax profiles from a group of electrode sites
during the hour preceding seizures. The transi-
tion from a seizure precursor to a seizure onset has
been defined as a “pre-ictal transition”. In essence,
the ASWS algorithm is developed to study the real
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seizure prediction, which is proposed as a natural ex-
tension of previous investigations based on an anal-
ysis of spatio-temporal properties of the brain dy-
namics [17, 11, 14, 6, 27]. The experiments in these
studies were undertaken to determine if it is pos-
sible to predict an impending seizure automatically
by a robust method employing the ASWS algorithm,
which is an online computer-based algorithm.

The spirit of the ASWS algorithm involves (1)
Quantitative Approach to Characterize the Dynam-
ics of EEG time series: an estimation of STLmax to
quantify temporal properties of the brain dynamics;
(2) Statistical Measure to Quantify Similarity Pat-
terns of the Brain Dynamics: a statistical estimate of
the degree of similarity of patterns/properties of the
brain dynamics; (3) Quadratic Programming Ap-
proach to Select Critical Electrode Sites: an opti-
mization technique to identify critical spatial fea-
tures (the most similar statistical properties) of the
brain dynamics.

2. Quantitative approach to char-
acterize the dynamics of EEG
time series

Since the brain is a nonstationary system, algo-
rithms used to estimate measures of the brain dy-
namics should be capable of automatically identify-
ing and appropriately weighing existing transients
in the data. In the ASWS algorithm, EEG signals
are divided into sequential epochs (non-overlapping
windows) to properly account for possible nonsta-
tionarities in the epileptic EEG. For each epoch of
each channel of EEG signals, we quantify the brain
dynamics by applying measures of chaos. An es-
timation of STLmax is employed as a measure of
chaos, quantification of the chaoticity of the attrac-
tor. In other words, it measures the average uncer-
tainty along the local eigenvectors of an attractor in
the phase space. In fact, the rate of divergence is
an important aspect of the system dynamics and is
reflected in the value of Lyapunov exponents. Next,
a short overview of mathematical models used in the
estimation of STLmax will be discussed.

To characterize the brain dynamics from multi-
dimensional EEG time series, the initial step in ana-
lyzing the dynamical properties of EEG signals is to

embed it in a higher dimensional space of dimension
p, which enables us to capture the behavior in time
of the p variables that are primarily responsible for
the dynamics of the EEG. We can now construct p-
dimensional vectors X(t), whose components consist
of values of the recorded EEG signal x(t) at p points
in time separated by a time delay. Construction of
the embedding phase space from a data segment x(t)
of duration T is made with the method of delays.
The vectors Xi in the phase space are constructed
as:

Xi = (x(ti), x(ti + τ) . . . x(ti + (p− 1) ∗ τ)) (1)

where τ is the selected time lag between the com-
ponents of each vector in the phase space, p is the
selected dimension of the embedding phase space,
and ti ∈ [1, T − (p− 1)τ ].

The method for estimation of the Short Term
Maximum Lyapunov Exponent (STLmax) for non-
stationary data (e.g., EEG time series) is previously
explained in [10, 13, 38]. In this article, only a short
description and basic notation of our mathematical
models used to estimate STLmax will be discussed.
First, let us define the following notation.

• X(ti) is the point of the fiducial trajectory
φt(X(t0)) with t = ti, X(t0) = (x(t0), . . . , x(t0+
(p−1)∗τ)), and X(tj) is a properly chosen vec-
tor adjacent to X(ti) in the phase space.

• δXi,j(0) = X(ti) − X(tj) is the displacement
vector at ti, that is, a perturbation of the fidu-
cial orbit at ti, and δXi,j(∆t) = X(ti + ∆t) −
X(tj + ∆t) is the evolution of this perturbation
after time ∆t.

• ti = t0 + (i− 1) ∗∆t and tj = t0 + (j − 1) ∗∆t,
where i ∈ [1, Na] and j ∈ [1, N ] with j 6= i.

• ∆t is the evolution time for δXi,j , that is, the
time one allows δXi,j to evolve in the phase
space. If the evolution time ∆t is given in sec-
onds, then L is in bits per second.

• t0 is the initial time point of the fiducial trajec-
tory and coincides with the time point of the
first data in the data segment of analysis. In
the estimation of L, for a complete scan of the
attractor, t0 should move within [0,∆t].
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• Na is the number of local Lmax’s that will be
estimated within a duration T data segment.
Therefore, if Dt is the sampling period of the
time domain data, T = (N − 1)Dt = Na∆t +
(p− 1)τ .

Let L be an estimate of the short term maximum
Lyapunov exponent, defined as the average of local
Lyapunov exponents in the state space. L can be
calculated as follows.

L =
1

Na∆t

Na∑
i=1

log2

|δXi,j(∆t)|
|δXi,j(0)|

(2)

with

δXi,j(0) = X(ti)−X(tj) (3)
δXi,j(∆t) = X(ti + ∆t)−X(tj + ∆t). (4)

Per electrode, we computed the STLmax profile
using the method proposed by Iasemedis et al. [10],
which is a modification of the method by Wolf et al.
[38]. Modification of the Wolf’s algorithm is neces-
sary to better estimate of STLmax in small epochs
that include transients, such as inter-ictal spikes.
The modification of the STLmax algorithm is pri-
marily in the searching procedure for a replacement
vector at each point of a fiducial trajectory. In the
previous study of EEG analysis, the crucial parame-
ter in the Lmax estimation is found to be an adaptive
estimation (in time and phase space) of the magni-
tude bounds of the candidate displacement vector
to avoid catastrophic replacements. This parame-
ter plays a very important role in distinguishing the
pre-ictal, the ictal, and the post-ictal stages.

3. Statistical measure to quantify
similarity patterns of the brain
dynamics

A similarity measure is proposed to estimate the dif-
ference of the dynamics of EEG time series between
different groups of the brain states. In other words,
the T-index is employed as a measure of statisti-
cal distance between two epochs of STLmax profiles.
The T -index at time t between electrode sites i and
j is defined as:

Ti,j(t) =
√

N × |E{STLmax,i − STLmax,j}|/σi,j(t)
(5)

where E{·} is the sample average difference for the
STLmax,i−STLmax,j estimated over a moving win-
dow wt(λ) defined as:

wt(λ) =
{

1 if λ ∈ [t−N − 1, t]
0 if λ 6∈ [t−N − 1, t],

where N is the length of the moving window.
Then, σi,j(t) is the sample standard deviation of the
STLmax differences between electrode sites i and j
within the moving window wt(λ). The thus defined
T -index follows a t-distribution with N−1 degrees of
freedom. In this study, STLmax profiles are divided
into overlapping 10-minute epochs (N = 60 points).

4. Quadratic programming ap-
proach to select critical elec-
trode sites

Motivated by the Sherrington-Kirkpatric Hamilto-
nian, one of the most interesting problems about this
model is the determination of the minimal-energy
states (GROUND STATE problem) [2, 3, 4]. For
this reason, quadratic 0-1 programming techniques
have been extensively used to study Ising spin glass
models [1, 9, 25, 4]. In this research, quadratic 0-1
programming techniques are employed to select the
critical cortical sites, where each electrode has only
two states, and to determine the minimal-average
T-index state (brain areas with the most similar dy-
namical states). This problem is formulated as a
multi-quadratic 0-1 knapsack problem with objec-
tive function to minimize the average T-index (a
measure of statistical distance between the mean val-
ues of STLmax) among electrode sites, the knapsack
constraint to identify the number of critical corti-
cal sites [18, 16], and an additional quadratic con-
straint to ensure that the optimal group of critical
sites shows the divergence in STLmax profiles after
a seizure. In essence, we basically aim to select elec-
trode sites such that they are most similar (minimum
T-index value) prior to the seizure, conditional on
the divergence of STLmax profiles after the seizure
onset.

The optimization problem is formulated as the fol-
lowings.

1. A T-matrix corresponding to the 10-minute
epoch prior to the seizure onset was generated
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and put into the objective function, which needs
to be minimized.

2. A T-matrix corresponding to the 10-minute
epoch after the seizure onset was generated and
put into the quadratic constraint, which ensures
that the selected electrode sites (solution to the
optimization problem) show the divergence in
STLmax after the seizure onset.

3. A linear constraint of the number of critical elec-
trode sites (k) was added in the optimization
problem.

4.1 Notation

Let A be n× n matrix, whose each element ai,j rep-
resents the T-index between electrode i and j within
10-minute window before the onset of a seizure. De-
fine x = (x1, ..., xn), where each xi represents the
cortical electrode site i. If the cortical site i is se-
lected to be one of the critical electrode sites, then
xi = 1; otherwise, xi = 0. k denotes the number of
selected critical electrode sites. Let B be n× n ma-
trix, whose each element bi,j represents the T-index
between electrode i and j within 10-minute window
after the onset of a seizure.

4.2 Formulation

The electrode selection problem can be formulated
as the following multi-quadratic 0-1 programming
problem given by:

min xT Ax (6)
s.t.

∑n
i=1 xi = k (7)

xT Bx ≥ Tαk(k − 1) (8)
x ∈ {0, 1}n. (9)

Eq. (8) is added to ensure that the optimal group
of critical sites shows this divergence by adding one
more quadratic constraint. The constant Tα is the
critical value of T-index, as previously defined, to
reject Ho: “two brain sites acquire identical STLmax

values within time window wt(λ)”.
Note that the problem in Eqs. (6)-(9) is a special

case of multi-quadratic 0–1 programming problems.
In this case, for the matrices A and B, ∀i, j aij ≥
0, bij ≥ 0 and ∀i aii = 0, bii = 0.

Consider the following problem

min
x∈{0,1}n, eT x=k

xT Qx, (10)

where ∀i, j qij ≥ 0 and ∀i qii = 0.
Problem (10) can be shown to be NP -hard as fol-

lows. In [9] it is shown that the maximum clique
problem (which is known to be NP -hard) in a graph
G = (V,E) with vertex set V = {1, . . . , n} and edge
set E is polynomially equivalent to

min f(x) = −
n∑

i=1
xi + 2

∑
(i, j) /∈ E

i > j

xixj

= −eT x + 2
∑

(i, j) /∈ E
i > j

xixj

s.t. x ∈ {0, 1}n.

(11)

Obviously, the problem (11) can be solved by solv-
ing n + 1 problems of the form

min fk(x) =
∑

(i, j) /∈ E
i > j

xixj

s.t. eT x = k, x ∈ {0, 1}n.

(12)

for each k ∈ [0, n]. Note that problem (12) is a re-
stricted version of problem (10). The solution of the
problem (11) will be the one that yields the value of
minimal 2fk(x)−k. Therefore, we can solve the max-
imum clique problem by solving n+1 problems (12).
Hence, problem (10) is NP -hard. As the problem
(10) with additional quadratic constraint is a gener-
alization of the problem (10), the problem in Eqs.
(6)-(9) is also NP -hard. To solve the NP -hard prob-
lem in Eqs. (6)-(9), two computational approaches
have been proposed in [7, 27].

5. Performance of an auto-
mated seizure warning system
(ASWS) algorithm

The development of an ASWS algorithm was ex-
tended from the results of our previous studies
demonstrating that if one knows which critical elec-
trode sites will participate in the next pre-ictal
transition, it may be possible to detect the seizure
precursors in time to warn about an impending
seizure [6]. The main components that constitute
the ASWS algorithm are as follows.
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1. The estimation of STLmax profiles is used to
measure the degree of order or disorder (chaos)
of the EEG signals.

2. The critical electrode selection was accom-
plished by an automated optimization technique
based upon the behavior of STLmax profiles be-
fore and after each preceding seizure.

3. Such a warning will be triggered when the simi-
larity degree of the brain dynamics from critical
electrode sites crosses the threshold. In prac-
tice, this warning will activate a therapeutic in-
tervention to abort an impending seizure.

The prospective analysis of the ASWS algo-
rithm in the continuous long-term intracranial EEG
recordings constitutes, for the first time to our
knowledge, an automated seizure warning device.
Cases with continuous recordings of several days in
duration are selected for this initial evaluation of the
method. To evaluate the performance of the ASWS
algorithm, we calculate the sensitivity and false pos-
itive rate of the algorithm tested on continuous long-
term intracranial EEG recordings, which have pre-
viously been obtained for clinical purposes. In the
algorithm, there are ranges of different parameter
settings, which need to be adjusted and optimized.
In order to find the optimal parameter setting, Re-
ceiver Operating Characteristics (ROC) curve anal-
ysis is employed to indicate an appropriate trade-off
that one can achieve between the false positive rate
(1-Specificity, plotted on X-axis) and the true pos-
itive rate (Sensitivity, plotted on Y-axis). To test
the ASWS algorithm on-line, we first trained the al-
gorithm by dividing the data set into training data
set and testing data set. In each of the 10 test pa-
tients, the first half of seizures are used to train for
the optimal parameter setting. With the optimal
parameter setting obtained from the training phase,
the algorithm is tested prospectively on the testing
data set. During the training step, in order to find
the most appropriate trade-off, the optimal param-
eter setting is defined as the one closest to the ideal
point in ROC curve (100% sensitivity and 0 false
positive rate). A “prediction score” is employed to
measure the closeness to the ideal point, which repre-
sents the “goodness” of a prediction algorithm. The
lower the prediction score, the better the prediction

algorithm. In fact, the prediction score is actually a
distance from the performance point (sensitivity and
false positive rate) of a predictor on the ROC curve
to the ideal point (100% sensitivity and 0 false pos-
itive rate). The prediction score can be calculated
from

√
(1− Sensitivity)2 + FPR2).

To demonstrate the importance of optimization
techniques in the electrode selection process that it
can capture the critical spatial connections of the
brain dynamics, a statistical testing experiment is
proposed to verify if the pre-ictal transitions de-
tected by the ASWS algorithm are truly the physi-
ological changes in the seizure development by com-
paring the prediction scores of the ASWS algorithm
in the cases with and without optimizing the elec-
trode selection process. To validate that the opti-
mization process in the ASWS algorithm is the key
component capable of identifying vital spatial de-
pendence of the brain dynamics in the seizure de-
velopment, the ASWS algorithm without optimiza-
tion in electrode site selection process will be tested.
In other words, the non-optimized ASWS (NASWS)
will follow the same experimental procedure except
that the groups of electrode sites used in the mon-
itoring process are randomly selected. The non-
optimized ASWS (NASWS) algorithm is tested on
the real dataset for 100 iterations. To demonstrate
that the optimization process is a vital ingredient
in the ASWS algorithm to capture the spatial prop-
erties of the seizure development, the performance
characteristics and average prediction score of the
NASWS algorithm are calculated.

The ASWS algorithm was tested on the dataset
of 10 patients, whose characteristics are described
in Table 1. The performance characteristics of the
ASWS algorithm in the first phase (training phase)
and the second phase (testing phase) are described
as follows. In the training phase for the optimal
parameter setting, the optimal parameter setting is
trained by testing the algorithm on the first half of
seizures for individual patient. With the optimal
parameter, the ASWS algorithm achieves a sensitiv-
ity (an average probability of a seizure to be pre-
dicted) of 76.12% with an average false prediction
rate of 0.17 per hour, which is equivalent to a pre-
diction score of 0.295. The average true warning
time in the training phase is 72.18 minutes while the
average ratio of warning times to inter-seizure in-
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tervals is 0.101. In testing phase, the algorithm is
tested on the other half of seizures from individual
patient using the optimal parameter from the train-
ing phase. The algorithm achieves a sensitivity of
68.75% with an average false prediction rate of 0.15
per hour, which is equivalent to a prediction score of
0.322. This false prediction rate corresponds to false
warning every 6.7 hours. On average the algorithm
generates a true warning approximately 72 minutes
before each seizure) while the average ratio of warn-
ing times to inter-seizure intervals is 0.317. These
results demonstrate the reliability of the ASWS al-
gorithm, which is an indication of the possibility to
develop automated seizure warning devices for diag-
nostic and therapeutic purposes.

The NASWS algorithm is tested on the real
dataset by randomly selecting groups of electrode
sites used in the monitoring process for 100 itera-
tions. For individual patient, we use the same opti-
mal parameter setting as in the previous experiment
in both training and testing phases. The perfor-
mance characteristics and average prediction score
of the NASWS algorithm in the training and testing
phases for individual patient and overall are summa-
rized as follows. In the training phase, the algorithm
achieved an average sensitivity of 50.90% with an av-
erage false prediction rate of 0.287 per hour, which
is equivalent to a prediction score of 0.509. In the
testing phase, the algorithm achieves a sensitivity of
59.10% with an average false prediction rate of 0.433
per hour, which is equivalent to a prediction score of
0.471. Note that the prediction score of the ASWS
algorithm is significantly lower than the average pre-
diction score of the NASWS algorithm. Examples of
the distribution of prediction scores in 100 iterations
of the NASWS algorithm tested on patient 3 com-
pared to the prediction score of the ASWS in the
training and testing phases are illustrated in Fig-
ures 1 (A) and (B), respectively. The prediction
score of the ASWS algorithm is significantly lower,
and is statistically better, than the prediction score
of the NASWS with p-value’s of 0.09 and 0.02 in
the training and testing phases, respectively. These
results indicate that the optimization process is a
vital ingredient in the ASWS algorithm to capture
dynamical interactions in the spatial properties of
brain dynamics as seizures advance. The results of
this study suggest that the optimal electrode sites
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Figure 1: Example of the the prediction score his-
togram of the NASWA algorithm versus the predic-
tion score of the ASWS algorithm on the training
(A) and testing (B) sets of patient 1. The p-value’s
of real seizure points in training and testing sets are
0.09 and 0.02 respectively, which is significantly less
than that of the NASWA algorithm.

selected by the ASWS algorithm demonstrate evi-
dence that they can portray the unique physiologi-
cal changes in the seizure development with sufficient
lead-time (the prediction horizon).

6. Concluding remarks

The results of this study indicate that the ASWS
algorithm designed to detect dynamical patterns
of critical electrode sites is capable of providing a
seizure warning well in advance of a seizure. In the
cases analyzed for this study, the average seizure
warning time ranges from 22.4 to 135.0 minutes.
This time interval is sufficient to allow a wide range
of therapeutic interventions. However, the perfor-
mance (sensitivity and false prediction rate) of the
ASWS algorithm are still considerably inferior to the

results reported in the previous seizure predictabil-
ity studies [12, 15]. One of the reasons is that
the electrode selection in those retrospective stud-
ies was done in advance during the next seizure (us-
ing the future information). On the other hand, in
this prospective study, the algorithm is tested on-
line without using any future information. In ad-
dition, the electrode selection process only uses the
information from the previous seizure. However, the
ASWS algorithm may be improved since we use the
same parameter settings for every patient in the pro-
cedures to quantify the brain dynamics, optimize
electrode selection, and detection of pre-ictal tran-
sition. Those parameters remain to be further in-
vestigated. Nevertheless, the temporal and spatial
properties of the brain dynamics captured by the
proposed method have been proven capable of re-
flecting the real physiological changes in the brain
as they correspond specifically to the real seizure
precursors.

These results are considered to be the groundwork
of seizure prediction research. Potential diagnostic
applications include a seizure warning system used
during long-term EEG recordings performed in a di-
agnostic epilepsy-monitoring unit. This type of sys-
tem could potentially be used to warn professional
staff of an impending seizure or to trigger functional
imaging devices in order to measure regional cere-
bral blood flow during seizure onset. This type of
seizure warning algorithm could also be incorporated
into digital signal processing chips for use in im-
plantable devices. Such devices could be utilized to
activate pharmacological or physiological interven-
tions designed to abort an impending seizure. Fu-
ture studies, employing novel experimental designs
are required to investigate the therapeutic potential
for implantable seizure warning devices.

In addition, Iasemidis and co-workers have also
explored the possibility of applying the ASWS al-
gorithm to non-invasive scalp EEG recordings [32,
34, 36]. The implementation is complicated by the
fact that the parameter settings (embedding dimen-
sion and time delay) in the estimation of STLmax is
optimized based on the ictal EEG depth recordings
in human subject with respect to minimization of
the transient and reduction of the nonstationarity of
EEG. Therefore the ASWS algorithm cannot gain
the maximum prediction power with non-optimal
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parameter setting, which remains to be further in-
vestigated. The clinical utility of a seizure warning
system depends upon the false positive rate as well
as the sensitivity of the system. The system utilized
in the present study produces false warnings at an
average of 6.5 hours, depending upon the parame-
ter settings. Further investigations are required to
determine the cause of these false warnings. Several
explanations are plausible. The value of STLmax

is only one dynamical feature of the EEG signals.
In theory, there is one Lyapunov exponent for each
dimension of a system. STLmax is an estimate of
only the largest Lyapunov exponent in a multidimen-
sional system. Knowledge of additional Lyapunov
exponents may make it possible to distinguish be-
tween a true pre-ictal transition and other conditions
in which there is convergence of the largest Lyapunov
exponent. Other potential measures to characterize
different aspects of the dynamics of a system also ex-
ist, such as the correlation dimension, Kolmorogov-
Sanai entropy, or other estimates of complexity. Fur-
ther investigation is required to determine whether
other measures, or some combination of these mea-
sures, may provide a means to distinguish between
true and false detections of the pre-ictal state. It is
also possible that the false warnings correctly detect
a pre-ictal or seizure susceptibility state, but normal
physiological resetting mechanisms intervene return-
ing the brain to a more normal dynamical state. Fi-
nally, it is possible that the dynamics of the pre-ictal
transition are not unique and may be found in other
physiological states.

This pre-clinical research forms a bridge between
seizure prediction research and the implementation
of seizure prediction/warning devices, which is a rev-
olutionary approach for handling epileptic seizures,
very similar to the brain-pacemaker. It may also
lead to clinical investigations of the effects of med-
ical diagnosis, drug effects, or therapeutic interven-
tion during invasive EEG monitoring of epileptic pa-
tients. Future research towards the treatment of hu-
man epilepsy and therapeutic intervention of epilep-
tic activities, as well as the development of seizure
feedback control devices, may be feasible. Thus, it
represents a necessary first step in the development
of implantable biofeedback devices to directly reg-
ulate therapeutic pharmacological or physiological
intervention to prevent impending seizures or other

brain disorders. For example, such an intervention
might be achieved by electrical or magnetic stimu-
lation (e.g., vagal nerve stimulation) or by a timely
release of an anticonvulsant drug. Another practical
application of the proposed approach would be to
help neurosurgeons quickly identify the epileptogenic
zone without having patients stay in the hospital for
the invasive long-time (10-14 days in duration) EEG
monitoring. This research has the potential to rev-
olutionize the protocol to identify the epileptogenic
zone, which could drastically reduce the healthcare
cost during the hospital stay for these patients. In
addition, this protocol will help physicians identify
epileptogenic zones without the necessity to risk pa-
tient safety by implanting depth electrodes in the
brain. In addition, the results from this study could
also contribute to the understanding of the inter-
mittency of other dynamical neurophysiological dis-
orders of the brain (e.g., migraines, panic attacks,
sleep disorders, and Parkinsonian tremors). This re-
search could also contribute to the localization of
defects (flaws), classification and prediction of spa-
tiotemporal transitions in other high dimensional bi-
ological systems such as heart fibrillation and heart
attacks.
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Abstract: An overview and some computational
challenges in intensity modulated radiation therapy
are presented. Experience with a mixed-integer pro-
gramming treatment planning model is described.
The MIP model allows simultaneous optimization
over the space of beamlet intensity weights and beam
and couch angles. The model uses two classes of de-
cision variables to capture the beam configuration
and intensities simultaneously. Binary (0/1) vari-
ables are used to capture “on” or “off” or “yes”
or “no” decisions for each field, and nonnegative
continuous variables are used to represent intensi-
ties of beamlets. Binary and continuous variables
are also used for each voxel to capture dose level
and dose deviation from target bounds. The treat-
ment planning model was designed to explicitly in-
corporate the following planning constraints: (a)
upper/lower/mean dose-based constraints, (b) dose-
volume and equivalent-uniform-dose constraints for
critical structures, (c) homogeneity constraints (un-
derdose/overdose) for the planning target volume
(PTV), (d) coverage constraints for PTV, and (e)
maximum number of beams allowed. Results of ap-
plying the MIP Model to a patient case are pre-
sented. Brief discussions of recent linear program-
ming and nonlinear programming treatment plan-
ning models are also described, as is an MIP ap-
proach for direct aperture optimization.

1. Introduction

Every year over 1.4 million new cancer cases are di-
agnosed [1] in the United States, and over half of the

patients receive radiation treatment at some point
during the course of their disease. The key to the
effectiveness of radiation therapy for the treatment
of cancer lies both in the fact that the repair mecha-
nisms for cancerous cells are less efficient than that of
normal cells, and the ability to deliver higher doses
to the target volume using “cross-fired” radiation
beam. Thus, a dose of radiation sufficient to kill
cancerous cells may not be lethal for nearby healthy
tissue. Nevertheless, avoiding or minimizing radia-
tion exposure to healthy tissue is extremely impor-
tant.

Using multiple beams of radiation from multiple
directions to cross-fire at the tumor volume provides
a method to keep radiation exposure to normal tis-
sue at relatively low levels, while dose to tumor cells
is elevated. The crux of the treatment planning pro-
cess involves designing beam profiles (i.e., a collec-
tion of beams) that delivers a sterilizing dose of ra-
diation to the tumor volume, while dose levels to
critical normal tissues are kept below established tol-
erance levels. Often, one attempts to design a plan
for which the prescription dose isodose surface con-
forms to the geometric shape of the specified tumor
volume [28, 67]. (The term prescription dose typi-
cally refers to the minimum dose desired to be deliv-
ered to the tumor volume; it is generally physician
specified.)

Linear accelerators (LINAC) are common beam
delivery units used for external beam radiotherapy.
The table on which the patient lies and the beam de-
livery mechanism for the LINAC rotate about sepa-
rate orthogonal axes, providing the ability to adjust
the angle and entry point of radiation fields used
during treatments. Each field is further defined by
a bank of multileaf collimators (MLC), small metal-
lic leaves located inside the LINAC treatment unit.
These leaves can be opened or closed, and used to
shape the radiation beam as it exits the machine.
Figure 1 shows a linear accelerator.

Intensity-modulated radiation therapy (IMRT) is
an important recent advance in radiation ther-
apy [68]. In conventional radiotherapy treatment,
the planning process consists of determining a set
of external beams that meet, as best as possible, the
clinical dose distribution criteria. In many cases, sig-
nificant compromises to critical structure function
have to be made to enable a tumoricidal dose to
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Figure 1: A linear accelerator used for external beam
radiotherapy treatment

be delivered to the targets. In IMRT, the radia-
tion fluence is varied across the beam, which allows
a higher degree of conformation to the tumor than
previously possible and allows concave isodose pro-
files to be generated, which may block, for example,
dose to critical structure anterior or posterior to the
target from that view. Specifically, not only is the
shape of the beam controlled, but combinations of
open and closed multileaf collimators modulate the
intensity as well. For this reason, IMRT provides
improved delivery control over conventional treat-
ment. Indeed, it provides an unprecedented capa-
bility to dynamically vary the dose to accommodate
the shape of the tumor from different angles, and to
spare normal tissues and organs-at-risk (OAR) that
may be potentially harmed during treatment.

Due to the complexity of the beam intensity profile
associated with IMRT, there has been a tremendous
research effort among medical physicists and radi-
ation oncologists related to IMRT treatment plan-
ning and delivery, and there remain many oppor-
tunities for computational advances, particularly in
treatment design. A computer-driven optimization
algorithm must be used to determine the beam flu-
ences (intensity maps) that provide the best compro-
mise between target underdosing, target overdosing
and critical structure overdosing. The textbook by
Webb [68] has a good list of references for IMRT
optimization.

In Sections 2.1 and 2.2, we describe the treatment
planning problem for IMRT, and discuss relevant in-
put data and the dose matrix. In Section 2.3, we
discuss our experience of a mixed integer program-
ming treatment planning model. The mixed integer
programming model allows one to simultaneously in-

Figure 2: The treatment of a head-and-neck case via
IMRT. Shown is a 3D view of the patient, the plan-
ning tumor volume (PTV), yellow; the spinal cord,
pink; and the parotid glands, red. The 9 beams,
shown with gray levels, reflect the modulated radia-
tion intensity. (Use with permission from [2])

corporate dose coverage, underdose, overdose, ho-
mogeneity and conformity criteria on the tumor vol-
ume; dose volume restrictions on the critical struc-
tures (how much volume can receive more than a
specified dose); and physical constraints on the total
number of beams. Section 2.4 describes briefly the
associated clinical results, and Section 2.5 provides
a very brief discussion of current mathematical pro-
gramming approaches. Summary and discussion is
presented in Section 3.

2. Intensity-modulated radiation
therapy treatment planning

Treatment planning in intensity modulated radiation
therapy consists of a sequence of steps:

• Acquiring a 3D image of the affected region

• Delineating target volumes and healthy
anatomical structures

• Selecting the appropriate radiation source and
energy

• Selecting a set of beam angles for use in treat-
ment

• Computing dose from each beam

• Performing intensity map optimization for the
selected beams

• Developing optimal collimator sequences for ac-
tual delivery
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These steps can be performed sequentially, or
some can be combined together, resulting in com-
plex numerical problems. In the sections presented
herein, much of the description follows our recent
work on mixed integer programming in this area
[35, 36]. Very brief discussions on linear program-
ming and nonlinear programming approaches are in-
cluded.

2.1 Input data and dose calculation

Image Acquisition and Segmentation. The
planning process begins when the patient is diag-
nosed with a tumor mass and radiation is selected
as part of the treatment regime. A 3D image, or
volumetric studyset, of the affected region, which
contains the tumor mass and the surrounding areas,
is acquired via computed tomography (CT) scans.
These CT data are used for treatment planning, and
electron density information derived from them are
used in the photon dose calculations. Additionally,
magnetic resonance imaging (MRI) scans may be ac-
quired, fused with the CT volumetric studyset, and
used to more accurately identify the location and ex-
tent of some tumors — especially those in the brain.
Based on these scans, the physician outlines the tu-
mor, and also outlines anatomic structures that need
to be held to a low dose during treatment.

It is common practice to identify three “volumes”
associated with the tumor. The gross tumor volume
(GTV) represents the volume that encompasses the
imageable or palpable macroscopic disease; that is,
the disease that can be detected and localized by
the oncologist. The clinical target volume (CTV)
expands the GTV to include regions of suspected
microscopic disease. The delineation of the CTV de-
pends heavily on a priori knowledge of the behavior
of a given tumor type. For a given GTV, tumor his-
tologic features, and patient type, a set of probabili-
ties exist (imperfectly known) that the tumor will, or
will not, extend microscopically into a given regional
organ or lymph node. However, accurate specific
data are usually not available to the radiation on-
cologist, only general principles are known. A more
quantitative and consistent definition of the CTV
is an important need. The planning target volume
(PTV) includes additional margins for anatomical
and patient setup uncertainties related to organ and

patient movement over time. All volumetric data is
discretized into voxels (point representations of vol-
ume properties) at a granularity that is conducive
both to generating a realistic model and to ensur-
ing that the resulting treatment planning instances
are tractable (i.e., capable of being solved in a rea-
sonable amount of computational time for practical
clinical usage).
Dose Calculation Radiation dose, measured in
Gray (Gy), is energy (Joules) deposited locally per
unit mass (kg). Fluence for external beam photon
radiation is defined mathematically by the number
of photon crossings per surface area. Dose tends
to be proportional to fluence, but is also influenced
by photons and electrons scattered in the patient’s
tissues as well as the incident energy and media in-
volved.

The calculation of the dose distribution associ-
ated with IMRT delivery is a critical aspect of the
IMRT optimization and delivery processes. The cal-
culated dose distribution from each candidate set of
plan parameters is evaluated at each iteration or at
the end of the optimization process, and the objec-
tive function values (costs or scores) for the itera-
tive optimization are typically obtained by analysis
of the dose distribution. For most systems, after
the fluence-optimized plan is obtained, another dose
calculation/optimization procedure, called leaf se-
quencing, is performed which first breaks the beams
up into machine-deliverable multileaf sequencing
steps, and then includes a final dose calculation step
based on the details of the multileaf field shapes.

One of the most commonly used IMRT dose cal-
culation algorithms involves a simple pencil beam
method and is usually part of a broader class of
correction-based dose-calculation algorithms [40, 4].
While these models offer significant speed advan-
tages for use in the optimization code, they have
varying limitations in accuracy.

In contrast, convolution/superposition, energy de-
position kernel-based approaches can take into ac-
count beam energy, geometry, beam modifiers, pa-
tient contour, and electron density distribution [41,
10, 3, 6, 43]. Both the convolution method and the
Monte Carlo method compute the dose per unit en-
ergy fluence (or fluence) incident on the patient.

Although it is clear that improved dose-calculation
accuracy afforded by the convolution-type calcula-
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tions may be important for IMRT, the long calcula-
tion times make this difficult.

Recently, significant progress has been made in the
development of Monte Carlo calculation algorithms
for photon beams, which simulate particle tracks in-
dividually, that are fast enough to compete with
other current methods [24, 39, 70, 57]. In several sit-
uations, the Monte Carlo method is likely to be even
more accurate than the convolution method [71]. For
example, multiple scatter (second and higher order
scatter) may be perturbed near the surface of a pa-
tient and the Monte Carlo method may be able to
account for this as long as the number of simulated
particles is sufficient. Direct Monte Carlo simulation
may be the only option for achieving accurate dose
computations in these complex situations. However,
the application of Monte Carlo methods to optimiza-
tion for IMRT is an area that requires much more
work before relevant results will be available.

Access and usage of realistic radiotherapy data can
be facilitated by using an open-source toolbox, de-
veloped by Deasy et al. [21], which enables users
to import clinical plan data into Matlab for viewing
and manipulation, and furthermore includes tools to
generate the dose influence matrices.

2.2 Treatment planning strategies

In a strategy known as forward treatment planning,
the beam geometry (beam orientation, shape, mod-
ifier, beam weights, etc.) is first defined, followed
by calculation of the 3D dose distribution. After
qualitative review of the dose distribution by the
treatment planner and/or radiation oncologist, plan
improvement is often attempted by modifying the
initial geometry (e.g., changing the beam weights
and/or modifiers, adding another beam), to improve
the target dose coverage and/or decrease the dose in
the organs at risk. This forward planning process is
repeated until a satisfactory plan is generated. As
one can imagine, this is a time consuming approach
to treatment planning.

In newer inverse treatment planning, the focus is
on the desired outcome (e.g., a specified dose distri-
bution or tumor control probability (TCP) and nor-
mal tissue complication probability (NTCP)) rather
than on how the outcome is achieved. The user of
the system specifies the goals; the computer (opti-

mization system) then adjusts the beam parameters
(mainly the intensities) iteratively in an attempt to
achieve the desired outcome. After review of the
computer optimized dose distribution, some modi-
fication of the desired outcome and adjustment of
the relative importance of each end point might be
needed if the physician is not satisfied with the dose
to the target volume or organs-at-risk (OARs).

Clearly, optimization is a classical inverse planning
approach: constraints and an objective function are
utilized to guide the optimization solver to select a
plan with pre-specified clinical properties. Begin-
ning with the work of Bahr et al. [5] in the late 60’s,
a number of research articles, authored primarily by
medical researchers, discussed the use of mathemati-
cal programming and other optimization techniques
in conventional external beam radiation treatment
planning [18, 30, 31, 32, 34, 56, 61, 65, 73].

Much of IMRT treatment planning research has
focused on the determination of the fluence map [67,
2, 7, 8, 11, 13, 44, 45, 72, 26, 12, 15, 19, 25, 27,
23]; that is, the radiation intensity or beam weights
associated to each of the small beamlets of a selected
radiation field/beam. However, the determination of
beam angles, shapes, modifiers, couch positions and
radiation energy to be used are best modeled using
discrete variables.

At present, most IMRT optimization systems use
dose-based and/or dose-volume-based criteria. One
method commonly used to create dose-based and
dose-volume objective functions involves minimiz-
ing the variance of the dose relative to the pre-
scribed dose for the target volumes or dose limits
for the organs at risk. This type of objective func-
tion has been used for traditional radiation therapy
treatment optimization for the past several decades
[62]. Variance is defined as the sum of the squares
of the differences between the calculated dose and
the prescribed dose or dose limit. Thus, a typi-
cal dose-based or dose-volume-based objective func-
tion is the sum of the variance terms representing
each anatomic structure multiplied by appropriate
penalty factors (i.e., importance factors). Just as
in conventional radiation therapy [14], the resulting
unconstrained quadratic programming problem is of-
ten solved via the gradient method [61, 72], although
the inclusion of dose-volume constraints makes the
problem non-convex [20].
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Within the optimization community, linear pro-
gramming and nonlinear programming have been
used to determine the optimal intensity map [55,
58], while mixed integer programming has been in-
troduced to simultaneously determine the optimal
beam angles and beam intensities [35, 36], and in
finding optimal apertures for radiation delivery [52].
Below, we describe the MIP models formulated for
simultaneous beam angle and intensity map opti-
mization, closely following the presentation in Lee
et al. [35, 36]. Results from a patient case will
be briefly summarized. We then briefly describe
linear and nonlinear programming approaches by
others. Besides mathematical programming ap-
proaches, heuristic approaches — such as simulated
annealing and genetic algorithms — have been com-
monly used for radiation therapy treatment opti-
mization.

2.3 Mixed integer programming treat-
ment planning models

The treatment planning models in [35, 36] use two
classes of decision variables to capture the beam
configuration and intensities simultaneously: Binary
(0/1) variables are used to capture “on” or “off” or
“yes” or “no” decisions for each field, and nonnega-
tive continuous variables are used to represent inten-
sities of beamlets. Binary and continuous variables
are also used for each voxel to capture dose level and
dose deviation from target bounds. Below, we pro-
vide the mathematical description of the treatment
planning models.

Let B denote the set of candidate beams (each
with an associated beam angle), and let Ni denote
the set of beamlets (discretized sub-beams — usu-
ally rectangular in cross-section — which comprise
the beam) associated with beam i ∈ B. Beamlets
associated with a beam can only be used when the
beam is chosen to be “on”. If a beam is on, the
beamlets with positive dose intensity will contribute
a certain amount of radiation dosage to each voxel in
the target volume and other anatomical structures.
Once the set of potential beamlet intensities is spec-
ified, the total radiation dose received at each voxel
can be modelled. Let wij ≥ 0 denote the intensity of
beamlet j from beam i (in calibrated monitor units).
Then the total radiation dose at a voxel P is given

by

DP (w) =
∑
i∈B

∑
j∈Ni

DP,ij wij , (1)

where DP,ij denotes the dose per monitor unit in-
tensity contribution to voxel P from beamlet j in
beam i. Various dose constraints are involved in
the design of treatment plans. Clinically prescribed
lower and upper bounds, say LP and UP , for dose at
voxel P are incorporated with (1) to form the basic
dosimetric constraints:

∑
i∈B

∑
j∈Ni

DP,ij wij ≥ LP ,
∑
i∈B

∑
j∈Ni

DP,ij wij ≤ UP .

(2)
Our model also allows selection of optimal beam

angles out of a collection of candidate beams. Thus,
the resulting plan returns the optimal beam geome-
try as well as beam intensities.

Let xi be a binary variable denoting the use or
non-use of beam i. The following constraints limit
the total number of beams used in the final plan and
ensure that beamlet intensities are zero for beams
not chosen:

∑
i∈B

xi ≤ Bmax and wij ≤ Mixi. (3)

Here, Bmax is the maximum number of beams de-
sired in an optimal plan, and Mi is a positive con-
stant that can be chosen as the largest possible in-
tensity emitted from beam i.

For each voxel in each anatomical structure, we as-
sociate one binary variable and one continuous vari-
able to capture whether or not desired dose level is
achieved and the deviation of received dose from de-
sired dose. We also impose additional constraints
into our treatment plan design, as discussed below.

Clinically, it may be desirable to incorporate cov-
erage constraints within the model. For example,
the clinicians may consider that it is acceptable if,
say, 95% of the PTV receives the prescription dose,
PrDose. Such a coverage requirement can be mod-
elled as follows.∑

i∈B

∑
j∈Ni

DP,ijwij − rP = PrDose, P ∈ PTV (4)
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rP ≤ DOD
PTVvP (5)

rP ≥ DUD
PTV(vP − 1) (6)∑

P∈PTV

vP ≥ α|PTV |. (7)

Here, rP is a real-valued variable that measures the
discrepancy between prescription dose and actual
dose; vP is a 0/1 variable that captures whether
voxel P is above or below the prescription dose
bounds or not; α corresponds to the minimum per-
centage of coverage required (e.g., α = 0.95); DOD

PTV

and DUD
PTV are the maximum overdose and maxi-

mum underdose levels tolerated for tumor cells; and
|PTV | represents the total number of voxels used
to represent the planning target volume. The val-
ues DOD

PTV and DUD
PTV can be chosen according to the

homogeneity level desired by the clinician for the
resulting plan. If rP > 0, then voxel P receives suf-
ficient radiation dose to cover the prescribed dose.
In this case, vP = 1 and the amount of radiation
for voxel P above the prescribed dose is controlled
by the maximum-allowed-overdose constant, DOD

PTV.
Similarly, when rP < 0, voxel P is underdosed, and
the amount of underdose is limited by DUD

PTV. In this
case, vP = 0.

By design, constraints (5) and (6) serve two pur-
poses: 1) they capture the number of PTV voxels
satisfying the prescription dose, and 2) they provide
a means of controlling underdose, overdose, and dose
homogeneity in the tumor. For the latter, the ratio
(PrDose +DOD

PTV)/(PrDose −DUD
PTV) can be viewed as

an implied PTV homogeneity constraint associated
with the model. Using a model with a smaller ho-
mogeneity constraint can be expected to result in a
more homogeneous plan. Constraint (7) corresponds
to the coverage level desired by the clinician.

Recently Equation (4) has been used to capture
dose gradient fall-off when 100% tumor coverage is
demanded. This was achieved by minimizing the
dose surrounding the tumor region [34]. For IMRT
planning optimization, it alone was used to model
the deviation from prescribed dose for the PTV
[13, 72, 17]. In these studies, a nonlinear objec-
tive function was formulated to steer the gradient-
based optimization engine towards achieving the pre-
scribed dose for the target volume; specifically, the
objective was to minimize the sum of dose devia-
tion across the target volume: ‖r‖q = (

∑
P |rP |q)1/q

(with no imposed constraints). When q = 2, this is
a least-squares problem.

It is desirable that dose received by radiation sen-
sitive organs/tissues other than the tumor volume
should be controlled to reduce the risk of injury.
Thus, for other anatomical structures involved in
the planning process, along with the basic dose con-
straints given in (2), additional binary variables are
employed for modeling the dose-volume-tolerance re-
lationships. To incorporate this concept into the
model, let αk, βk ∈ (0, 1] for k in some index set K.
(In our implementations, the cardinality of the in-
dex set K is typically between 3 and 10 but could be
larger.) The following set of constraints ensures that
at least 100βk% of the voxels in an organ-at-risk,
OAR, receive dose less than or equal to αk PrDose.
The symbols yαk

P and zOAR
P denote binary variables.

∑
i∈B

∑
j∈Ni

DP,ijwij ≤ [αk PrDose]yαk
P

+ Dmaxz
OAR
P , P ∈ OAR(8)∑

P∈OAR

yαk
P ≥ βk|OAR | (9)

yαk
P + zOAR

P = 1 (10)

y
αk1
P ≤ y

αk2
P for αk1 ≤ αk2 . (11)

Here, Dmax is the maximum dose allowed for OAR
(often determined by the maximum dose thought to
be well-tolerated), and αk, βk combinations are pa-
tient and tumor specific. When the total dose re-
ceived by a voxel P is less than αk PrDose, yαk

P =
1, and this contributes to a voxel count in Con-
straint (9). When it does not satisfy the dose bound
αk PrDose, then yαk

P = 0, and in this case the dose
will be forced to be lower than the maximum dose
tolerance allowed, Dmax, and zOAR

P = 1. Note that by
using discrete variables to represent each voxel and
controlling the number of points satisfying a certain
dose level, we can impose strict dose-volume crite-
ria within the solution space. This is in contrast
to the common approach of incorporating “soft”
dose-volume criteria into a composite objective func-
tion [72]. Langer[31] was the first to apply MIP ideas
to model dose-volume relationships in conventional
radiation therapy. For IMRT, the challenge is that
the resulting problem instances are large-scale (in-
volving hundreds of thousands or even millions of in-
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equalities), and are computationally taxing and diffi-
cult to solve without the development of specialized
algorithms [35].

Besides the commonly used least-squares dose de-
viation objective function, other objective functions
have been used, including: minimizing the squared
radiation dose to OARs, maximizing the minimum
dose to tumor target, maximize/minimize weighted
sum of doses to target and OARs. Other more
complex biological objective functions — involving
equivalent uniform dose (the p-norm or generalized
mean value), tumor control probability, and normal
tissue complication probability — have also been
proposed [37, 38, 60, 59, 47, 50, 48, 49, 46].

The MIP treatment planning models for real pa-
tient cases involve tens to hundreds of thousands of
binary variables and constraints. Our experience is
that the resulting MIP instances are intractable via
commercial MIP solvers. However, we have observed
that, by using specialized algorithms [35], clinically
superior treatment plans can be obtained [36].

2.4 Computational results for a real pa-
tient case

We briefly describe a patient study. Input data in-
cludes 3D images of tissue to be treated. On these
images, the planning target volume (PTV) is de-
lineated, and contours of organs-at-risk (OAR) and
normal tissue are outlined. In addition to these
structures, a tissue ring of 5 mm thickness is drawn
around the PTV. We call this ring the critical-
normal-tissue-ring. In [31] it was demonstrated that
this normal tissue construct can assist in obtaining
conformal plans for radiosurgery. In [35, 36], we have
shown its usefulness in designing conformal IMRT
plans. For the results herein, depending on the vol-
ume of the anatomical structure, a 3–5 mm voxel
size (for dose computation) is used for setting up
the MIP model instances.

For each beamlet, the dose per monitor unit inten-
sity to a voxel is calculated. The total dose per unit
intensity deposited to a voxel is equal to the sum
of dose per intensity deposited from each beamlet.
For the results described here, 16-24 coplanar fields
of size 10 × 10 cm2 to 15 × 15 cm2 are generated
as candidate fields, each of which consists of 400-
900 0.5 × 0.5 cm2 beamlets. This results in a large

set of candidate beamlets used for instantiating the
treatment planning models.

In [35], we study the effect of maximum beam an-
gles allowed on plan quality. In [36], five objective
functions are considered and contrasted on three dif-
ferent tumor sites to compare plan quality and to
gain understanding of the steering effects of clini-
cal objectives. Below, we illustrate the results for a
head-and-neck case obtained via multiple objectives.

Some common metrics for reporting quality of
treatment plans include:

• Coverage — Coverage is computed as the ratio
of the target volume enclosed by the prescrip-
tion isodose surface to the total target volume.
Coverage is always less than or equal to 1.

• Conformity — Conformity is a measure of how
well the prescription isodose surface conforms to
the target volume; it is computed as the ratio
of the total volume enclosed by the prescription
isodose surface to the target volume enclosed by
this same surface. Conformity is always greater
than or equal to 1.

• Homogeneity — The homogeneity index is de-
fined as the ratio of the maximum dose to the
minimum dose received by the tumor volume.

• Mean dose and maximum dose for each critical
structure.

• Dose-volume histograms (volume receiving
more than each given dose level) and isodose
curves.

Observe that these metrics are not entirely inde-
pendent. For example, while it is desirable to obtain
a prescription isodose surface big enough to cover the
target volume in order to ensure good coverage, it is
also desirable to have this surface “small” in order
to conform to the target volume. In addition, varia-
tions in conformity and coverage affect the amount
of irradiation to nearby organs at risk, thus affecting
dose distribution levels of these organs.
Head-and-neck tonsil cancer. We focus on a
tonsil cancer case where the PTV is adjacent to
the left submandibular salivary gland. The follow-
ing structures with their respective clinical dose lim-
its are considered. PTV should receive 68 Gy; left
parotid: 30% ≤ 27 Gy and 100% ≤ 68 Gy; right
parotid: 100% ≤ 15 Gy; right submandibular gland:
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100% ≤ 30 Gy; left submandibular gland: 10% ≤
27 Gy and 100% ≤ 68 Gy; larynx: 80% ≤ 30 Gy
and 100% ≤ 55 Gy; spinal cord and brainstem:
100% ≤ 45 Gy.

Figure 3: Anatomical structures for the head-and-
neck. Notation: right parotid (RP), left parotid
(LP), right submandibular gland (RS), left sub-
mandibular gland (LS), spinal cord (SP), brain stem
(BS).

A total of 1501 PTV voxels, 406 critical-normal-
tissue-ring voxels, 3247 voxels for the OARs and
6416 normal tissue voxels were used to instantiate
the MIP treatment model.

Here, we report the results for a plan with a max-
imum of 7 beams in which the objectives include
minimizing the total dose to the critical structures
and optimizing the PTV conformity. The results are
based on the utilization of a specialized branch-and-
bound MIP solver for large-scale external beam ra-
diation [35] that is built on top of a general-purpose
mixed integer research code (MIPSOL) [33]. Fig-
ure 4 shows the dose volume histograms, and Fig-
ure 5 shows the isodose curves. Compared to the
clinical plan, we observe the following:

a. For all critical structures, the mean dose and
max dose received are drastically less than the
clinical plan.

b. For OARs that are close to the tumor volume,
namely the left parotid (< 10mm) and the left
submandibular gland (< 10mm), the mean dose
received is significantly reduced (70% and 50%,
respectively). The spinal cord enjoys moderate
dose reduction (33%).

c. The coverage constraint and the objective
helped in achieving 98% coverage. Underdose
and overdose constraints kept minimum and
maximum dose to the tumor relatively uniform,
with a homogeneity index of 1.24. And the con-
formity objective helped to achieve a superior

conformity value of 1.34. These all improve over
the clinical plan, which had 97% coverage, and
scores of 1.4 for homogeneity, and 1.6 for con-
formity.

d. The total overall monitor units of radiation
from the MIP optimized plan is less than that
from the clinical plan, indicating that the plan
uses less radiation but yet can still deliver the
required prescription dose to the tumor, thus
sparing excessive radiation dose to the critical
structures and normal tissue.

It is noteworthy that in contrast to the typically
equispaced beams chosen when beam configurations
are pre-selected, the optimal 7-beam plans obtained
herein (that are considered clinically acceptable) do
not have equispaced beams. Indeed, the optimal
beam angles returned appear to be non-intuitive,
and to depend on PTV size and geometry and the
spatial relationship between the tumor and the crit-
ical structures.

Figure 4: Dose-volume histogram for the head-and-
neck for the MIP model with objective of minimiz-
ing the OARs dose and optimizing prescription dose
conformity to tumor.

Figure 5: Isodose curves for the head-and-neck case.
The critical-normal-tissue-ring is represented by the
dotted curve.
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2.5 Other mathematical programming
approaches

As previously mentioned, linear and nonlinear pro-
gramming have long been used for radiation therapy
treatment optimization [5, 56, 55]. Lacking discrete
variables, LP and NLP models typically use a pre-
selected beam configuration, and focus on determin-
ing beam intensities. Below, we briefly outline some
recent approaches in this area.
Simplified least-squares objective function
and dose-volume constraints: In [55], using
pre-selected beam angles, linear programming ap-
proaches were used to determine the associated op-
timal intensity map. The authors approximated the
least-squares objective function measuring deviation
of tumor voxel dose from prescribed dose via a piece-
wise linear function. They also utilized conditional
value-at-risk (CVaR) constraints to control the mean
dose received by subsets of voxels receiving the high-
est or lowest doses among all voxels in a given struc-
ture. Two forms of such constraints were used:
(i) lower α-CVaR: The average dose received by the
subset of a target of relative volume 1-α receiving
the lowest doses must be at least equal to Lα.
(ii) upper α-CVaR: The average dose received by the
subset of a structure of relative volume 1-α receiving
the highest doses may be no more than Uα.
CVaR constraints were originally proposed by Rock-
afellar and Uryasev [54] to formulate risk manage-
ment constraints in terms of the tail means of distri-
butions of financial risk. Mathematically, the upper
α-CVaR constraint on a structure S is defined as

ζ̄α
S (w)+

1
(1− α)|S|

∑
j∈S

max{0, DP (w)−ζ̄α
S (w)} ≤ Uα

S ,

(12)
where Uα

S is an upper bound target, DP (w) is the
total dose from intensity vector w for voxel P ,
and ζ̄α

S (w) denotes the smallest dose level with the
property that no more than 100(1 − α) percent of
the structure S receives a larger dose. The au-
thors showed that including such partial-volume con-
straints to bound the tail averages of the differential
dose-volume histograms of structures helps to im-
prove dose homogeneity to the target and to spare
dose to critical structures.
Nonlinear programming approach: Sheperd et

al. [58] summarized several LP and NLP models
for determining optimal intensity maps. To model
dose-volume constraints, they applied a nonlinear er-
ror function approach. Their problem involved min-
imizing the standard objective of sum of the square
differences between the prescribed and the actual
doses over all of the voxels in the tumor, subject
to two partial volume constraints — to OARs and
to normal tissue. For an OAR S, the partial volume
constraint defined on S was:∑

P∈S

erf(DP (w)− ΛP ) ≤ α|S| (13)

where Λ denotes a selected dose limit and α denotes
the fraction of the volume allowed to exceed this
limit. The error function erf(x) realizing the par-
tial volume constraints is a nonlinear function. (See
fig. 4.4 in [58].)

The authors also compared this with an MIP
approach to model partial volume constraints
on OARs, involving a simplified version of con-
straints (8)–(11) described above.
Direct aperture approaches via mixed integer
programming: Preciado-Walters et al. [52] formu-
lated the treatment planning problem as a mixed
integer program over a coupled pair of column gen-
eration processes: the first designed to produce in-
tensity maps for the IMRT beamlet grid, followed by
the second to specify protected area choices aiding
in reducing the computational burden of enforcing
the dose-volume restrictions on tissues.

Instead of determining the beamlet intensity for
each beam, and then applying leaf-sequencing to de-
termine delivery patterns, the planning involved first
selecting a fixed set of deliverable beams. For each
of these beams, the authors pre-determined heuris-
tically a set of delivery patterns. They then intro-
duced continuous nonnegative decision variables xjq

to represent the assigned intensity to whole pattern
q of beam j. Then the dose at any voxel P , is cal-
culated by

DP =
n∑

j=1

∑
q∈Qj

aPjqxjq (14)

where xjq ≥ 0, Qj is the set of patterns for beam
j, and aPjq is the implied dose coefficient of pattern
q from beam j at voxel P when the pattern q is
constructed.
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The resulting MIP model for treatment planning
employed the objective function of maximizing the
minimum tumor dose. Similar to the above MIP
models, the constraints include upper and lower dose
bounds on tumor voxels, and upper dose bounds for
healthy tissues. Dose-volume constraints are formu-
lated just as constraints (8)–(11) above.

3. Summary and discussion

This article provides a brief overview of optimization
issues in intensity-modulated radiation therapy, and
summarizes our experience with an integer program-
ming approach. The MIP model described allows si-
multaneous optimization over the space of beamlet
intensity weights and beam angles. Based on ex-
periments with clinical data, this approach can re-
turn good plans that are clinically acceptable and
practical. This work is distinguished from recent
IMRT research in several ways. First, in previous
methods beam angles are selected prior to intensity
map optimization. Herein, we employ 0/1 variables
to model the set of candidate beams, and thereby
allow the optimization process itself to select opti-
mal beams. Second, instead of incorporating dose-
volume criteria within the objective function as in
previous work, herein, a combination of discrete and
continuous variables associated with each voxel pro-
vides a mechanism to strictly enforce dose-volume
criteria within the constraints. The challenge of
using MIP modeling for IMRT is that the result-
ing instances are very large-scale, and since general
MIP is NP-hard, specialized algorithms designed to
solve IMRT instances are required. Third, incor-
porating the critical-normal-tissue-ring can improve
conformity in general tumor sites, without addition
of other dose-shaping structures. In general, our
MIP approach uses constraints to control a variety
of clinical criteria (coverage, homogeneity, underdose
to PTV, overdose to PTV, dose-volume limits on
organs-at-risk and normal tissue), while assigning
an objective to help with the solution search. The
model can also be expanded to incorporate energy
selection, couch angles and other treatment param-
eters.

Patient studies indicate that using the MIP ap-
proach, one can produce good clinical plans that ag-
gressively lower OAR dose below pre-imposed levels

without compromising local tumor control [36]. This
is appealing since lower OAR dose should translate
to lower normal tissue complication probability.

Computationally, the specialized optimization en-
gine returns good feasible solutions within 30 min-
utes. We have performed standard leaf-sequencing
techniques on the resulting optimal intensity map,
and showed that returned plans are deliverable. The
results provide evidence that the MIP approach is
viable in producing good treatment plans that can
potentially lead to significant improvement in local
tumor control and reduction in normal tissue com-
plication.

With pre-selected beam angles, other approaches
such as linear programming [55] and nonlinear pro-
gramming [72, 58] can be used for intensity map op-
timization. Comparisons are needed to gauge the
quality of these plans versus those from MIP ap-
proaches. Direct aperture optimization [52] is ap-
pealing, since resulting segments are implementable
directly. Again, comparisons are needed to de-
termine the effectiveness, advantages and tradeoffs
among different planning optimization methods.

Other computational challenges actively pursued
by medical physics experts include image segmenta-
tion, planning under uncertainties, biological model-
ing, leaf-sequencing and treatment outcome analysis.

4. Acknowledgement

This research was partially supported by grants from
the National Science Foundation, the National Insti-
tute of Health, and the Charles Edison Foundation.

REFERENCES

[1] American Cancer Society, Source: Cancer Facts and Fig-
ures – 2006, Atlanta, Georgia 2006.

[2] Intensity-Modulated Radiotherapy: Current Status and
Issues of Interest, Intensity Modulated Radiation
Therapy Collaborative, Working Group, Int. J. Ra-
diat. Oncol. Biol. Phys., 51 (2001), pp. 880–914.

[3] A. Ahnesjo, Collapsed cone convolution of radiant energy
for photon dose calculation in heterogeneous media,
Med. Phys., 16 (1989), pp. 577–592.

[4] A. Ahnesjo and M. M. Aspradakis, Dose calculations for
external photon beams in radiotherapy, Phys. Med.
Biol., 44 (1999), pp. 99–155.



30 SIAG/OPT Views-and-News

[5] G. K. Bahr, J. G. Kereiakes, H. Horwitz, R. Finney,
J. Galvin, and K. Goode, The method of linear pro-
gramming applied to radiation treatment planning,
Radiology, 91 (1968), pp. 686–693.

[6] J. J. Battista and M. B. Sharpe, True three-dimensional
dose computations for megavoltage x-ray therapy: A
role for the superposition principle, Aust. Phys. Eng.
Sci. Med., 15 (1992), pp. 159–178.

[7] T. Bortfeld, Optimized planning using physical objectives
and constraints, Semin. Radiat. Oncol., 9 (1999), pp.
20–34.

[8] T. Bortfeld, K. Jokivarsi, M. Goitein, J. Kung, and
S. B. Jiang, Effects of intra-fraction motion on
IMRT dose delivery: statistical analysis and simu-
lation, Phys. Med. Biol., 47 (2002), pp. 2203–2220.

[9] J. D. Bourland and E. L. Chaney, A finite-size pencil
beam model for photon dose calculations in three di-
mensions, Med. Phys., 19 (1992), pp. 1401–1412.

[10] A. Boyer and E. Mok, A photon dose distribution
model employing convolution methods, Med. Phys.,
12 (1985), pp. 169–177.

[11] A. Brahme, Development of radiation therapy optimiza-
tion, Acta Oncol., 39 (2000), pp. 579–595.

[12] M. P. Carol, Integrated 3-D conformal multivane in-
tensity modulation delivery system for radiotherapy,
Proceedings of the 11th International Conference on
the Use of Computers in Radiation Therapy, Madi-
son, WI, 1994.

[13] Y. Chen, D. Michalski, C. Houser, and J. M. Galvin,
A deterministic iterative least-squares algorithm for
beam weight optimization in conformal radio ther-
apy, Phys. Med. Biol., 47 (2002), pp. 1647–1658.

[14] R. E. Cooper, A gradient method of optimizing external-
beam radiotherapy treatment plans, Radiology, 128
(1978), pp. 235–243.

[15] C. Cotrutz and L. Xing, Using voxel-dependent impor-
tance factors for interactive DVH-based dose opti-
mization, Phys. Med. Biol., 47 (2002), pp. 1659–
1669.

[16] C. Cotrutz and L. Xing, Segment-based dose optimiza-
tion using a genetic algorithm, Phys. Med. Biol., 48
(2003), pp. 2987–2998.

[17] S. M. Crooks and L. Xing, Linear algebraic methods ap-
plied to intensity modulated radiation therapy, Phys.
Med. Biol., 46 (2001), pp. 2587–2606.

[18] S. Das and L. Marks, Selection of coplanar and non-
coplanar beams using three-dimensional optimization
based on maximum beam separation and minimized
nontarget irradiation, Int. J. Radiat. Oncol. Biol.
Phys., 38 (1997), pp. 643–655.

[19] C. De Wagter, C. O. Colle, L. G. Fortan, B. B. Van
Duyse, D. L. Van den Berge, and W. J. De Neve,
3D conformal intensity-modulated radiotherapy plan-
ning: interactive optimization by constrained matrix
inversion, Radiot. Oncol., 47 (1998), pp. 69–76.

[20] J. O. Deasy, Multiple local minima in radiotherapy op-
timization problems with dose-volume constraints,
Med. Phys., 24 (1997), pp. 1157–1161.

[21] J. O. Deasy, E. K. Lee, T. Bortfeld, M. Langer, K. Zakar-
ian, J. Alaly, Y. Zhang, H. Liu, R. Mohan, R. Ahuja,
A. Pollack, J. Purdy, and R. Rardin, A collaboratory
for radiation therapy treatment planning optimiza-
tion research, Ann. Oper. Res., to appear.

[22] D. Djajaputra, Q. Wu, Y. Wu, and R. Mohan, Algorithm
and performance of a clinical IMRT beam-angle op-
timization system, Phys. Med. Biol., 48 (2003), pp.
3191–3212.

[23] B. A. Fraass, M. L. Kessler, D. L. McShan, L. H. Marsh,
B. A. Watson, W. J. Dusseau, A. Eisbruch,
H. M. Sandler, and A. S. Lichter, Optimization
and clinical use of multisegment intensity-modulated
radiation therapy for high-dose conformal therapy,
Semin. Radiather. Oncol., 9 (1999), pp. 60–77.

[24] C. L. Hartmann Siantar, P. M. Bergstrom, W. P. Chan-
dler, et al., Lawrence Livermore National Labora-
tory’s PEREGRINE Project, Proceedings of the XII
International Conference on the Use of Computers
in Radiation Therapy, Salt Lake City, Utah, 1997.

[25] M. Hilbig, R. Hanne, P. Kneschaurek, F. Zimmermann,
and A. Schweikard, Design of an inverse planning
system for radiotherapy using linear optimization,
Med. Phys., 12 (2002), pp. 89–96.

[26] T. Holmes and T. R. Mackie, A comparison of three
inverse treatment planning algorithms, Phys. Med.
Biol., 39 (1994), pp. 91–106.

[27] D. H. Hristov and B. G. Fallone, An active set algorithm
for treatment planning optimization, Med. Phys., 24
(1997), pp. 1455–1464.

[28] F. Khan, The Physics of Radiation Therapy, Williams
and Wilkins, second edition, Baltimore, 1992.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Op-
timization by simulated annealing, Science, 220
(1983), pp. 671–680.

[30] H. Kooy, L. Nedzi, J. Loeffler, E. Alexander, C. Cheng,
E. Mannarino, E. Holupka, and R. Siddon, Treat-
ment planning for stereotactic radiosurgery of in-
tracranial lesions, Int. J. Radiat. Oncol. Biol. Phys.,
21 (1991), pp. 683–693.



Volume 17 Number 2 October 2006 31

[31] M. Langer, R. Brown, M. Urie, J. Leong, M. Stracher,
and J. Shapiro, Large scale optimization of beam
weights under dose-volume restrictions, Int. J. Ra-
diat. Oncol. Biol. Phys., 18 (1990), pp. 887–893.

[32] M. Langer, S. Morrill, R. Brown, O. Lee, and R. Lane,
A comparison of mixed integer programming and fast
simulated annealing for optimizing beam weights in
radiation therapy, Med. Phys., 23 (1996), pp. 957–
964.

[33] E. K. Lee, Computational Experience with a Gen-
eral Purpose Mixed 0/1 Integer Programming Solver
(MIPSOL), Software Report, School of Industrial
and Systems Engineering, Georgia Institute of Tech-
nology, 1997.

[34] E. K. Lee, T. Fox, and I. Crocker, Optimization of ra-
diosurgery treatment planning via mixed integer pro-
gramming, Med. Phys., 27 (2000), pp. 995–1004.

[35] E. K. Lee, T. Fox, and I. Crocker, Integer program-
ming applied to intensity-modulated radiation ther-
apy treatment planning, Ann. Oper. Res., 119 (2003),
pp. 165–181.

[36] E. K. Lee, T. Fox, and I. Crocker, Simultaneous beam ge-
ometry and intensity map optimization in intensity-
modulated radiation therapy, Int. J. Radiat. Oncol.
Biol. Phys., 64 (2006), pp. 301–320.

[37] J. T. Lyman, Complication probability as assessed from
dose volume histograms, Radiat. Res., 104 (1985),
pp. 13–19.

[38] J. T. Lyman and A. B. Wolbarst, Optimization of radi-
ation therapy. III. A method of assessing complica-
tion probabilities from dose-volume histograms, Int.
J. Radiat. Oncol. Biol. Phys., 13 (1987), pp. 103–
109.

[39] C.-M. Ma, E. Mok, A. Kapur, et al., Clinical implemen-
tation of a Monte Carlo treatment planning system,
Med. Phys., 26 (1999), pp. 2133–2143.

[40] T. R. Mackie, P. Reckwerdt, T. McNutt T, et al., Photon
beam dose computations, J. Palta and T. R. Mackie,
editors, Teletherapy: Present and Future, Advanced
Medical Publishing, College Park, MD (1996) pp.
103–136.

[41] T. R. Mackie, J. W. Scrimger, and J. J. Battista, A
convolution method of calculating dose for 15-MV x-
rays, Med. Phys., 12 (1985), pp. 188–196.

[42] G. S. Mageras and R. Mohan, Application of fast sim-
ulated annealing to optimization of conformal radia-
tion treatments, Med. Phys., 20 (1993), pp. 639–647.

[43] R. Mohan, C. Chui, and L. Lidofsky, Differential pen-
cil beam dose computation model for photons, Med.
Phys., 13 (1986), pp. 64–73.

[44] R. Mohan, G. S. Mageras, B. Baldwin, et al., Clinically
relevant optimization of 3-D conformal treatments,
Med. Phys., 19 (1992), pp. 933–944.

[45] R. Mohan, X. Wang, A. Jackson, et al., The poten-
tial and limitations of the inverse radiotherapy tech-
nique, Radiot. Oncol., 32 (1994), pp. 232–248.

[46] A. Niemierko, Reporting and analyzing dose distribu-
tions: A concept of equivalent uniform dose, Med.
Phys., 24 (1997), pp. 103–110.

[47] A. Niemierko and M. Goitein, Calculation of normal
tissue complication probability and dose-volume his-
togram reduction schemes for tissues with a critical
element architecture, Radiot. Oncol., 20 (1991), pp.
166–176.

[48] A. Niemierko and M. Goitein, Modeling of normal tis-
sue response to radiation: The critical volume model,
Int. J. Radiat. Oncol. Biol. Phys., 25 (1992), pp. 135–
145.

[49] A. Niemierko and M. Goitein, Implementation of a model
for estimating tumor control probability for an in-
homogeneously irradiated tumor, Radiot. Oncol., 29
(1993), pp. 140–147.

[50] A. Niemierko, M. Urie, and M. Goitein, Optimization of
3D radiation therapy with both physical and biological
end points and constraints, Int. J. Radiat. Oncol.
Biol. Phys., 23 (1992), pp. 99–108.

[51] O. Z. Ostapiak, Y. Zhu, and J. Van Dyk, Refinements of
the finite size pencil beam model of three-dimensional
photon dose calculation, Med. Phys., 24 (1997), pp.
743–750.

[52] F. Preciado-Walters, R. Rardin, M. Langer, and V. Thai,
A coupled column generation, mixed integer ap-
proach to optimal planning of intensity modulated
radiation therapy for cancer, Math. Program., 101
(2004), pp. 319–338.

[53] A. B. Pugachev, A. L. Boyer, and L. Xing, Beam ori-
entation optimization in intensity-modulated radia-
tion treatment planning, Med. Phys., 27 (2000), pp.
1238–1245.

[54] R. Rockafellar and S. Uryasev, Conditional value-at-risk
for general loss distributions, J. Banking Finance, 26
(2002), pp. 1443–1471.

[55] H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, A. Kumar,
and J. G. Li, A novel linear programming approach
to fluence map optimization for intensity modulated
radiation therapy treatment planning, Phys. Med.
Biol., 48 (2003), pp. 3521–3542.

[56] I. I. Rosen, R. G. Lane, S. Morrill, and J. A. Belli, Treat-
ment plan optimization using linear programming,
Phys. Med. Biol., 18 (1991), pp. 141–152.



32 SIAG/OPT Views-and-News

[57] J. Sempau, S. J. Wilderman, and A. F. Bielajew, DPM, a
fast, accurate Monte Carlo code optimized for photon
and electron radiotherapy treatment planning dose
calculations, Phys. Med. Biol., 45 (2000), pp. 2263–
2291.

[58] D. M. Shepard, M. C. Ferris, G. H. Olivera, and T. Rock-
well Mackie, Optimizing the delivery of radiation
therapy to cancer patients, SIAM Rev., 41 (1999),
pp. 721–744.

[59] A. R. Smith and C. C. Ling, editors, Implementation
of three dimensional conformal radiotherapy, Int. J.
Radiat. Oncol. Biol. Phys., 33 (1995), pp. 779–976.

[60] A. R. Smith, J. A. Purdy, editors, Three-dimensional
photon treatment planning, Report of the Collabora-
tive Working Group on the Evaluation of Treatment
Planning for External Photon Beam Radiotherapy,
Int. J. Radiat. Oncol. Biol. Phys., 21 (1991), pp. 3–
268.

[61] S. V. Spirou and C. S. Chui, A gradient inverse planning
algorithm with dose-volume constraints, Med. Phys.,
25 (1998), pp. 321–333.

[62] G. Starkschall, A constrained least-squares optimization
method for external beam radiation therapy treat-
ment planning, Med. Phys., 11 (1984), pp. 659–665.

[63] J. Stein, R. Mohan, X. Wang, T. Bortfeld, Q. Wu,
K. Preiser, C. C. Ling, and W. Schlegel, Number and
orientations of beams in intensity-modulated radia-
tion treatments, Med. Phys., 24 (1997), pp. 149–160.

[64] H. Szu and R. Hartley, Fast simulated annealing, Phys.
Lett. A., 122 (1987), pp. 157–162.

[65] U. Treuer, H. Treuer, M. Hoevels, P. Muller, and
V. Sturm, Computerized optimization of multiple
isocenters in stereotactic convergent beam irradia-
tion, Phys. Med. Biol., 43 (1998), pp. 49–64.

[66] S. Webb, Optimisation by simulated annealing of three-
dimensional conformal treatment planning for radi-
ation fields defined by a multileaf collimator, Phys.
Med. Biol., 36 (1991), pp. 1201–1226.

[67] S. Webb, The Physics of Three-Dimensional Radiation
Therapy: Conformal Radiotherapy, Radiosurgery
and Treatment Planning, Institute of Physics Pub-
lishing, Philadelphia, 1993.

[68] S. Webb, Intensity-Modulated Radiation Therapy, Insti-
tute of Physics Publishing, Bristol, 2000.

[69] S. Webb, D. J. Convery, P. M. Evans, Inverse plan-
ning with constraints to generate smoothed intensity-
modulated beams, Phys. Med. Biol., 43 (1998), pp.
2785–2794.

[70] A. E. S. von Wittenau, L. J. Cox, P. M. Bergstrom,
et al., Correlated histogram representation of Monte
Carlo derived medical accelerator photon-output
phase space, Med. Phys., 26 (1999), pp. 1196–1211.

[71] M. K. Woo, J. R. Cunningham, and J. J. Jerioranski,
Extending the concept of primary and scatter sepa-
ration to the condition of electronic disequilibrium,
Med. Phys., 17 (1990), pp. 588–595.

[72] Q. Wu and R. Mohan, Algorithms and functionality of an
intensity modulated radiotherapy optimization sys-
tem, Med Phys., 27 (2000), pp. 701–711.

[73] Y. Yu, M. Schell, and J. B. Zhang, Decision theoretic
steering and genetic algorithm optimization: Appli-
cation to stereotactic radiosurgery treatment plan-
ning, Med. Phys., 24 (1997), pp. 1742–1750.



Volume 17 Number 2 October 2006 33

Bulletin

1. Event Announcements

IPCO 2007
The Twelfth Conference on Integer Programming

and Combinatorial Optimization
June 25–27, 2007

Cornell University, Ithaca, New York, USA
http://ipco2007.orie.cornell.edu

The IPCO conference is held every year, except
for those years in which the ‘Symposium on Math-
ematical Programming’ takes place. The conference
is meant to be a forum for researchers and practi-
tioners working on various aspects of integer pro-
gramming and combinatorial optimization. The aim
is to present recent developments in theory, compu-
tation, and applications in that area. The scope of
IPCO includes algorithmic and structural results in
topics such as approximation algorithms algorithmic
game theory, branch and bound algorithms, branch
and cut algorithms, computational biology, compu-
tational complexity, computational geometry, cut-
ting plane algorithms, diophantine equations, geom-
etry of numbers, graph and network algorithms, in-
teger programming, matroids and submodular func-
tions, on-line algorithms and competitive analysis,
polyhedral combinatorics, randomized algorithms,
random graphs, scheduling theory and scheduling al-
gorithms, semidefinite programs.

IPCO is not restricted to theory. Computational
and practical work, implementations, novel applica-
tions of these techniques to practical problems, and
revealing computational studies, are most welcome.

During the conference, approximately 30-35 pa-
pers will be presented in a series of non-parallel ses-
sions. Each lecture will be 30 minutes long. The
program committee will select the papers to be pre-
sented on the basis of extended abstracts to be sub-
mitted as described at the conference webpage (see
above). The proceedings will contain full texts of
all presented papers. Each participant will receive a
copy at the conference.

Program Committee:

• Dimitris Bertsimas (MIT)

• Dan Bienstock (Columbia)

• Alberto Caprara (Bologna)

• Bill Cook (Georgia Tech)

• Gerard Cornuejols (CMU)

• Matteo Fischetti, Chair, Program Committee
(Padova)

• Bertrand Guenin (Waterloo)

• Christoph Helmberg (TU Chemnitz)

• Tibor Jordn (ELTE Budapest)

• Tom McCormick (UBC)

• David Williamson, Chair, Local Arrangements
(Cornell)

• Gerhard Woeginger (Eindhoven)

For further information, please contact us via the
email address ipco2007@orie.cornell.edu.

Optimization 2007
July 22-25, 2007

University of Oporto, Oporto, Portugal
http://www.fep.up.pt/opti2007

Optimization 2007 is the sixth international con-
ference on optimization organized in Portugal since
1991. We are proud to announce that six world-
renowned scientists have accepted invitations to give
plenary lectures. We hope to provide a friendly at-
mosphere and a lively social program.

The meeting will be held at the Faculty of Eco-
nomics of the University of Porto, and it is supported
by APDIO and SPM (the portuguese operations re-
search and mathematical societies).

List of plenary speakers:

• Charles Audet
École Polytechnique Montréal, Canada
Direct Search Methods for Non-Smooth Opti-
mization

• Egon Balas
Carnegie Mellon University, USA
Lift-and-Project and Its Impact on the State of
the Art in Integer Programming

http://ipco2007.orie.cornell.edu/
http://www.fep.up.pt/opti2007
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• Adam N. Letchford
Lancaster University, UK
The Max-Cut Problem: Applications and Algo-
rithms

• Sven Leyffer
Argonne National Laboratory, USA
Recent Progress in Mixed Integer Nonlinear
Programming

• Michael J. Todd
Cornell University, USA
Conic Optimization: Interior-Point Methods
and Beyond

• Xin Yao
University of Birmingham, UK
Evolutionary Optimization and Constraint Han-
dling

José Fernando Gonçalves (Conference Chair)
opti2007@fep.up.pt.

ICCOPT II
Second Mathematical Programming Society

International Conference on Continuous
Optimization

August 12–16, 2007
McMaster University, Hamilton, Ontario, Canada

http://iccopt-mopta.mcmaster.ca

ICCOPT is held every three years and is a forum
for researchers interested in all aspects of continuous
optimization. ICCOPT-II will be held together with
MOPTA-07. The conference will be preceded by
graduate-level tutorials on nonlinear programming,
modeling languages, and applications. More infor-
mation on the invited speakers, stream topics, etc.
will be available soon on the official webpage.

We are looking forward to welcoming you at
ICCOPT-II / MOPTA-07 in Hamilton at McMas-
ter University in August 2007.

Henry Wolkowicz (hwolkowicz@uwaterloo.ca),
Támas Terlaky (terlaky@mcmaster.ca).

Chairman’s Column

The triennial International Symposium on Mathe-
matical Programming (ISMP) and SIAM Optimiza-
tion meetings have become the major international
conferences in the field of optimization. Having re-
cently returned from ISMP 2006 in Rio de Janeiro,
I would like to give a brief “report from Rio” for
SIAG/OPT members who were unable to attend.
The ISMP 2006 meeting had approximately 750 reg-
istrants with sessions held over 5 days. In addition to
an opening session at the spectacular Teatro Munici-
pal that featured a program of Brazilian music, and a
“rodizio” conference dinner, the meeting had an out-
standing slate of Plenary and Semi-Plenary sessions
on a wide variety of topics including special sessions
dedicated to George Dantzig and Leonid Khachiyan.
The location of ISMP 2006, along with that of ISMP
2003 (Copenhagen) and the 2005 SIAM Optimiza-
tion meeting (Stockholm) dramatically illustrates
how truly international the field of optimization has
become. The 2006 meeting was the first ISMP held
in South America, and the large number of South
American participants shows how vibrant the opti-
mization research community is in countries such as
Argentina, Brazil, Chile and Venezuela. Although
the 2008 SIAM Optimization meeting in Boston will
offer less-expensive travel for US participants, co-
organizer Sven Leyffer and I will be hard-pressed
to match the Brazilian dance demonstration at the
ISMP 2006 conference dinner for spectator interest.
We welcome your suggestions on any and all aspects
of the 2008 meeting as we begin planning for it.

Kurt M. Anstreicher, SIAG/OPT Chair
Department of Management Sciences
University of Iowa
S210 PBB Iowa City, IA 52242,
USA
kurt-anstreicher@uiowa.edu
http://www.biz.uiowa.edu/faculty/anstreicher

http://iccopt-mopta.mcmaster.ca
http://www.biz.uiowa.edu/faculty/anstreicher
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Comments from the Editor

In this issue of SIAM/Optimization Views-and-
News (Volume 17, Number 2) we publish a set of ar-
ticles on Optimization in Medicine. Continuous and
discrete optimization techniques are being applied to
several important problems in Medicine with great
success. This is due in part to the current dissemi-
nation of technology in Medicine, but is also related
to the wide range of applicability of Optimization as
a fundamental discipline in Applied Mathematics.

SIAM/Optimization Views-and-News is grateful
to our guest editors, Eva K. Lee and Ariela Sofer,

for having accepted to edited this special issue on
Optimization in Medicine, and to the authors who
have contributed with interesting and relevant pa-
pers. I would also like to thank Pedro Martins
(IPC, Coimbra, Portugal) for helping me revising
the manuscripts.

Lúıs N. Vicente, Editor
Department of Mathematics
University of Coimbra
3001-454 Coimbra
Portugal
lnv@mat.uc.pt
http://www.mat.uc.pt/~lnv

http://www.mat.uc.pt/~lnv
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